Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 189: 110409, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36037726

RESUMEN

The dosimetric characteristics of newly developed gadolinium (Gd) glass dosimeter produced via sol-gel method are reported. Irradiation were made using a 750 kW neutron flux thermal power and 1.25 MeV 60Co gamma rays with entrance doses from 2 to 10 Gy. Investigation has been done on various Gd dopant concentrations, ranging from 1 to 10 mol%. The Gd-doped silica glass have been characterised for thermoluminescence (TL) dose response, sensitivity, linearity index, glow curve and kinetic parameter analysis. For particular dopant concentration obtained in 6 mol% Gd, the least squares fit shows the change in TL yield, correlation coefficient (r2) of better than 0.980 (at 95% confidence level), with neutron and gamma exposure to be 8 and 4 times greater than that of 1 mol% Gd, respectively. Broad peaks in the absence of any sharp peak observed in the glow curve confirms the amorphous nature of the prepared glass. A glow curve of Gd-doped SiO2 sample is observed with a single prominent peak (Tm) within 200-250 °C (peak shifting appears with respect to the increment of dopant concentration) and 350 °C (for all respective Gd dopants) for neutron and gamma irradiations, respectively. Deconvolution shows the glow curves of the Gd-doped SiO2 glass to be formed of seven and five overlapping peaks, with figures of merit below 2% (FOM) of between 1.38-1.79 and 1.30-1.97 for the particular neutron and gamma irradiations, respectively. Through use of Glowfit deconvolution software, the key trapping parameters of activation energy, E and frequency factor, s-1 were calculated for the Gd-doped SiO2 glass. The mechanism of TL yield with the gradual increase in Gd concentrations and doses is explained upon the incorporation of Gd and radiation damage that change the structure of the electron traps in the glass matrix. These early results indicate that selectively screened Gd-SiO2 glass can be developed into a promising TL system towards dosimetric applications.

2.
Appl Radiat Isot ; 138: 65-72, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28427834

RESUMEN

Using tailor-made sub-mm dimension doped-silica fibres, thermoluminescent dosimetric studies have been performed for α-emitting sources of 223RaCl2 (the basis of the Bayer Healthcare product Xofigo®). The use of 223RaCl2 in the palliative treatment of bone metastases resulting from late-stage castration-resistant prostate cancer focuses on its favourable uptake in metabolically active bone metastases. Such treatment benefits from the high linear energy transfer (LET) and associated short path length (<100µm) of the α-particles emitted by 223Ra and its decay progeny. In seeking to provide for in vitro dosimetry of the α-particles originating from the 223Ra decay series, investigation has been made of the TL yield of various forms of Ge-doped SiO2 fibres, including photonic crystal fibre (PCF) collapsed, PCF uncollapsed, flat and single-mode fibres. Irradiations of the fibres were performed at the UK National Physical Laboratory (NPL). Notable features are the considerable sensitivity of the dosimeters and an effective atomic number Zeff approaching that of bone, the glass fibres offering the added advantage of being able to be placed directly into liquid. The outcome of present research is expected to inform development of doped fibre dosimeters of versatile utility, including for applications as detailed herein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...