Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726866

RESUMEN

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.

2.
Clin Cancer Res ; 29(10): 1969-1983, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36795892

RESUMEN

PURPOSE: We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN: We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS: We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS: FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.


Asunto(s)
Folistatina , Neoplasias Ováricas , Humanos , Femenino , Folistatina/genética , Folistatina/metabolismo , Folistatina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proliferación Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética
3.
Breast Cancer Res ; 24(1): 100, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581993

RESUMEN

BACKGROUND: After many years of neglect in the field of alternative splicing, the importance of intron retention (IR) in cancer has come into focus following landmark discoveries of aberrant IR patterns in cancer. Many solid and liquid tumours are associated with drastic increases in IR, and such patterns have been pursued as both biomarkers and therapeutic targets. Paradoxically, breast cancer (BrCa) is the only tumour type in which IR is reduced compared to adjacent normal breast tissue. METHODS: In this study, we have conducted a pan-cancer analysis of IR with emphasis on BrCa and its subtypes. We explored mechanisms that could cause aberrant and pathological IR and clarified why normal breast tissue has unusually high IR. RESULTS: Strikingly, we found that aberrantly decreasing IR in BrCa can be largely attributed to normal breast tissue having the highest occurrence of IR events compared to other healthy tissues. Our analyses suggest that low numbers of IR events in breast tumours are associated with poor prognosis, particularly in the luminal B subtype. Interestingly, we found that IR frequencies negatively correlate with cell proliferation in BrCa cells, i.e. rapidly dividing tumour cells have the lowest number of IR events. Aberrant RNA-binding protein expression and changes in tissue composition are among the causes of aberrantly decreasing IR in BrCa. CONCLUSIONS: Our results suggest that IR should be considered for therapeutic manipulation in BrCa patients with aberrantly low IR levels and that further work is needed to understand the cause and impact of high IR in other tumour types.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Intrones/genética , Mama/patología , Proliferación Celular
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830054

RESUMEN

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Asunto(s)
Fusión Génica , Lectinas Tipo C/genética , Leucemia Mieloide/genética , MicroARNs/genética , Proteínas Mutantes Quiméricas/genética , Receptores Mitogénicos/genética , Trans-Empalme , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Citarabina/farmacología , Humanos , Lectinas Tipo C/metabolismo , Leucemia Mieloide/metabolismo , MicroARNs/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Receptores Mitogénicos/metabolismo , Activación Transcripcional
5.
Cell Mol Life Sci ; 78(3): 1011-1027, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32458023

RESUMEN

Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.


Asunto(s)
Cromatina/metabolismo , Daño del ADN/genética , Transducción de Señal/genética , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Cisplatino/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Mutagénesis Sitio-Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Sitio de Iniciación de la Transcripción/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
6.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322625

RESUMEN

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

7.
Front Cell Dev Biol ; 8: 552, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766238

RESUMEN

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.

8.
Cells ; 8(8)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430887

RESUMEN

Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Colorrectales/genética , Epigénesis Genética/genética , ARN no Traducido/genética , Microambiente Tumoral/genética , Empalme Alternativo , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Ratones , Procesamiento Proteico-Postraduccional
9.
Gynecol Oncol ; 148(1): 181-188, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29132874

RESUMEN

OBJECTIVES: The most widely used approach for the clinical management of women with high-grade serous ovarian cancer (HGSOC) is surgery, followed by platinum and taxane based chemotherapy. The degree of macroscopic disease remaining at the conclusion of surgery is a key prognostic factor determining progression free and overall survival. We sought to develop a non-invasive test to assist surgeons to determine the likelihood of achieving complete surgical resection. This knowledge could be used to plan surgical approaches for optimal clinical management. METHODS: We profiled 170 serum microRNAs (miRNAs) using the Serum/Plasma Focus miRNA PCR panel containing locked nucleic acid (LNA) primers (Exiqon) in women with HGSOC (N=56) and age-matched healthy volunteers (N=30). Additionally, we measured serum CA-125 levels in the same samples. The HGSOC cohort was further classified based on the degree of macroscopic disease at the conclusion of surgery. Stepwise logistic regression was used to identify predictive markers. RESULTS: We identified a combination of miR-375 and CA-125 as the strongest discriminator of healthy versus HGSOC serum, with an area under the curve (AUC) of 0.956. The inclusion of miR-210 increased the AUC to 0.984; however, miR-210 was affected by hemolysis. The combination of miR-34a-5p and CA-125 was the strongest predictor of completeness of surgical resection with an AUC of 0.818. CONCLUSION: A molecular test incorporating circulating miRNA to predict completeness of surgical resection for women with HGSOC has the potential to contribute to planning for optimal patient management, ultimately improving patient outcome.


Asunto(s)
Antígeno Ca-125/sangre , Cistadenocarcinoma Seroso/sangre , Proteínas de la Membrana/sangre , MicroARNs/sangre , Neoplasias Ováricas/sangre , Anciano , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/cirugía , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/cirugía , Valor Predictivo de las Pruebas , Cuidados Preoperatorios/métodos , Pronóstico , Resultado del Tratamiento
10.
PLoS One ; 11(4): e0153200, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27054342

RESUMEN

microRNAs have emerged as powerful regulators of many biological processes, and their expression in many cancer tissues has been shown to correlate with clinical parameters such as cancer type and prognosis. Present in a variety of biological fluids, microRNAs have been described as a 'gold mine' of potential noninvasive biomarkers. Release of microRNA content of blood cells upon hemolysis dramatically alters the microRNA profile in blood, potentially affecting levels of a significant number of proposed biomarker microRNAs and, consequently, accuracy of serum or plasma-based tests. Several methods to detect low levels of hemolysis have been proposed; however, a direct comparison assessing their sensitivities is currently lacking. In this study, we evaluated the sensitivities of four methods to detect hemolysis in serum (listed in the order of sensitivity): measurement of hemoglobin using a Coulter® AcT diff™ Analyzer, visual inspection, the absorbance of hemoglobin measured by spectrophotometry at 414 nm and the ratio of red blood cell-enriched miR-451a to the reference microRNA miR-23a-3p. The miR ratio detected hemolysis down to approximately 0.001%, whereas the Coulter® AcT diff™ Analyzer was unable to detect hemolysis lower than 1%. The spectrophotometric method could detect down to 0.004% hemolysis, and correlated with the miR ratio. Analysis of hemolysis in a cohort of 86 serum samples from cancer patients and healthy controls showed that 31 of 86 (36%) were predicted by the miR ratio to be hemolyzed, whereas only 8 of these samples (9%) showed visible pink discoloration. Using receiver operator characteristic (ROC) analyses, we identified absorbance cutoffs of 0.072 and 0.3 that could identify samples with low and high levels of hemolysis, respectively. Overall, this study will assist researchers in the selection of appropriate methodologies to test for hemolysis in serum samples prior to quantifying expression of microRNAs.


Asunto(s)
Biomarcadores/análisis , Recolección de Muestras de Sangre/métodos , Cistadenocarcinoma Seroso/sangre , Hemólisis/genética , MicroARNs/sangre , MicroARNs/genética , Neoplasias Ováricas/sangre , Estudios de Casos y Controles , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Pronóstico , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Front Oncol ; 4: 144, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971229

RESUMEN

Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...