Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Omega ; 9(14): 15904-15914, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617699

RESUMEN

Montmorillonite clay and agar are naturally occurring materials of significant importance in designing biocompatible materials tailored for applications in biotechnology and medicine. The introduction of magnetic properties has the potential to significantly boost their characteristics and expand their applications. In this study, we have successfully synthesized highly intercalated magnetic composites, incorporating magnetic iron oxide nanoparticles (MNPs), montmorillonite clay (MMT), and agar (AG), through a thermo-physicomechanical method. Three samples of MMT-AG with 2, 1.5, and 0.5% MNPs and three sample composites of MNPs-AG with 2, 1, and 0.5% MMT clay are prepared. The synthesized composites were characterized by SEM, XRD, TGA, DTA, and FTIR. SEM analysis revealed a uniform dispersion of MNPs and MMT in the composite. The XRD pattern confirmed the presence of MNPs in the composite site. The TGA and DTA results demonstrated improved thermal stability due to the MNP incorporation. FTIR spectra showed all of the constituents of agar, MNPs, and MMT clay. The swelling ratio was observed to range from 835% to 1739%. The swelling study indicated an increased hydrophobicity with the addition of MNPs to the composite. Antibacterial activities revealed a significant inhibition of Escherichia coli (E. coli) growth by ranging from 10 to 19 nm in the composite. The composite also exhibited a considerable antioxidant action, with IC50 values of 7.96, 46.55, and 57.58 µg/mL, and electrical properties just like conductors.

2.
RSC Adv ; 14(13): 8871-8884, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38495991

RESUMEN

Recently, there has been significant interest in photocatalytic reactions involving graphitic carbon nitride (g-C3N4) due to its sp2-hybridized carbon and nitrogen content and it is an ideal candidate for blending with other materials to enhance performance. Here, we have synthesized and analyzed both doped and undoped g-C3N4 nanoparticles. Specifically, we co-doped sulfur (S) into g-C3N4, integrated it with ZnO particles, and investigated the photocatalytic potential of these nanocomposites to remove Safranin-O dye. The initial step involved the preparation of pure g-C3N4 through calcination of urea. Subsequently, S-g-C3N4 was synthesized by calcining a mixture of urea and thiourea with a 3 : 1 ratio. Finally, the ZnO-S-g-C3N4 composite was synthesized using the liquid exfoliation technique, with distilled water serving as the exfoliating solvent. These samples were characterized by advanced techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), energy dispersive X-ray (EDX) and scanning electron microscopy (SEM), to assess their crystallinity, morphology, optical properties, and phase purity. Subsequently, these nanocomposites were employed in catalytic and photocatalytic processes to remove the Safranin-O dye (SO). The results highlighted the formation of Z-scheme junction responsible for ZnO-S-g-C3N4's significant performance improvement. The comparison of results demonstrated that S-g-C3N4 and ZnO-S-g-C3N4 composites revealed an effective removal of Safranin-O dye in the presence of UV-light as compared to pure g-C3N4, as it was attributed to the phenomenon of improved separation of photogenerated charge carriers as a result of heterojunction formation between S-g-C3N4 and ZnO interfaces. In addition to improving photocatalytic performance, this study presents a facile route for producing ZnO-S-g-C3N4 composite with superior adsorption capabilities and selectivity.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38139804

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE: In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS: These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS: Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS: The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.

4.
Toxics ; 11(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37888715

RESUMEN

Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.

5.
Molecules ; 28(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175365

RESUMEN

This research work focuses on the isolation and thermo-chemical modification of cellulose and its application as an adsorbent for the removal of organic pollutants. The used cellulose was collected from a locally available plant (Olive Europa) commonly called Zaitoon. The stem branches of Zaitoon were collected and then kept in water for 40-45 days at room temperature to extract the cellulose fibers. These cellulose fibers were then kept in the Soxhlet apparatus for washing in n-hexane for 72 h. The purified cellulose was divided into three parts: one part was subjected to thermal activation (TAC), the second was modified chemically (CMC) with Benzyl Chloride, while the last one remained un-functionalized (UFC). All the three forms of cellulose were characterized via FTIR and SEM, then utilized for the removal of Titan Yellow (TY) dye from aqueous media via adsorption process by varying the contact time, temperature, concentration of dye and type, and dose of adsorbent. The adsorption efficiencies of all adsorbents were compared under different experimental variables. Thermally activated cellulose showed the best results for the removal of TY compared with other materials. The calculated removal percentage of TY was found to be 97.69, 94.83, 94.83, and 98% under equilibrium conditions of contact time, temperature, adsorbent dose, and TY concentration. Similarly, the uptake capacities of TAC under optimal experimental conditions were found to be 19.56, 18.96, 18.52, and 18.75 mg/g. Thermodynamic studies of TAC, CMC, and UFC showed that the values of ΔG are negative, while those of ΔH and ΔS are positive in all cases and at all temperatures. This indicates that the TY elimination process is endothermic and spontaneous with an entropy-driven nature. The obtained results indicate that the as-fabricated low-cost biomaterials can effectively remove dyes from wastewater through physicochemical interactions. The removal process was influenced by the nature of the adsorbent and the operating variables.


Asunto(s)
Celulosa , Contaminantes Químicos del Agua , Celulosa/química , Aguas Residuales , Adsorción , Termodinámica , Agua/química , Colorantes/química , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
6.
Molecules ; 28(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241943

RESUMEN

Green synthesis is the most effective and environmentally friendly way to produce nanoparticles. The present research aimed at the biosynthesizing of silver nanoparticles (AgNPs) using Tribulus terrestris seed extract as the reducing and stabilizing agent and investigating their anti-diabetic properties. Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to analyze the synthesized silver nanoparticles from Tribulus terrestris (TT-AgNPs). The spectroscopic characterization revealed a surface Plasmon resonance band at 380 nm, which verified the development of TT-AgNPs. The transmittance peaks were observed at 596, 1450, 1631, 2856, 2921, and 3422 cm-1 through the FTIR spectrophotometer. The XRD spectrum showed four distinct diffraction peaks in the 2θ range at 20° to 60°. Intense peaks were at 26.32°, 30.70°, 44.70°, 56.07°, 53.75°, 66.28°, and 75.32°. The SEM analysis revealed that the prepared TT-AgNPs were clustered loosely with a smooth and spherical structure and were of relatively uniform size. The in vitro antidiabetic potential of TT-AgNPs was assessed by using glucose yeast uptake, glucose adsorption, and alpha-amylase assays. TT-AgNPs showed the highest activity (78.45 ± 0.84%) of glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of TT-AgNPs was 10.40 ± 0.52% at 30 mM, while in the alpha-amylase assay, TT-AgNPs exhibited the maximum activity of 75.68 ± 0.11% at 100 µg/mL. The results indicate a substantial anti-diabetic effect of the TT-AgNPs. Furthermore, the in vivo antidiabetic study was performed on TT-AgNPs in streptozotocin-induced diabetic mice. After receiving TT-AgNPs treatment for 30 days, the mice were sacrificed for biochemical and histological analyses of pancreatic and liver samples, which demonstrated a good improvement when compared to the control group. Mice treated with TT-AgNPs showed a significant drop in blood sugar levels, showing that the biosynthesized TT-AgNPs have effective anti-diabetic properties.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas del Metal , Tribulus , Ratones , Animales , Nanopartículas del Metal/química , Hipoglucemiantes/farmacología , Plata/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Saccharomyces cerevisiae , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucosa , Semillas , Difracción de Rayos X , Antibacterianos/farmacología
7.
Environ Technol ; 44(7): 911-920, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34586969

RESUMEN

Nitrate as an important water pollutant, causing eutrophication was analyzed in Pakistan at different water sources (hand pump (HP), bore hole (BH) and tube well (TW)) to assess the contamination level caused by NO3-. NO3- concentrations in the HP water samples were 31 mg L-1 to 59 mg L-1, in BH 20 mg L-1 to 79 mg L-1 while in TW water samples it was between 29 to 55 mg L-1. The association of NO3- with other selected parameter in groundwater can be determined by using statistical approaches. Different physicochemical parameters (pH, electrical conductivity (EC), temperature and dissolved oxygen (DO)) were studied in groundwater samples of the research district. The Pearson correlation coefficient (r) for groundwater characteristics were calculated. Hierarchical Cluster Analysis (HCA) was used to categorize samples based on their groundwater quality similarities and to find links between groundwater quality factors. The key relationship of the groundwater for HP samples on EC and TDS (r = 1) had a great correlation, while all other parameters correlations were lower (r = 0.40), BH's parameters on WT and WSD (r = 0.57), WT and pH (r = 0.57), EC and DO (r = 0.50), DO and TDS (0.50), EC and TDS (r = 1) had a quite high correlation, while all other parameters correlations were less than (r = 0.40), on the other hand, tube well parameters on TDS and EC (r = 1) had a perfect correlation, DO and pH (r = 0.75) parameters correlations were less than (r = 0.40).


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Calidad del Agua , Monitoreo del Ambiente , Agua Subterránea/análisis , Compuestos Orgánicos , Agua , Contaminantes Químicos del Agua/análisis
8.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014579

RESUMEN

Wastewater from the textile industries contaminates the natural water and affects the aquatic environment, soil fertility and biological ecosystem through discharge of different hazardous effluents. Therefore, it is essential to remove such dissolved toxic materials from water by applying more efficient techniques. We performed a comparative study on the removal of rhodamine B (RhB) and Nile blue (NB) from water through a catalytic/photocatalytic approach while using a CuO-SiO2 based nanocomposite. The CuO-SiO2 nanocomposite was synthesized through a sol-gel process using copper nitrate dihydrate and tetraethylorthosilicate as CuO and SiO2 precursors, respectively, with ammonia solution as the precipitating agent. The synthesized nanocomposites were characterized, for their structure, morphology, crystallinity, stability, surface area, pore size and pore volume, by using a scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) techniques. The CuO-SiO2 nanocomposite was used for potential environmental applications in the terms of its catalytic and photocatalytic activities toward the degradation of rhodamine B (RhB) and Nile blue (NB) dyes, in the presence and absence of light, while monitoring the degradation process of dyes by UV-Visible spectroscopy. The catalytic efficiency of the same composite was studied and discussed in terms of changes in the chemical structures of dyes and other experimental conditions, such as the presence and absence of light. Moreover, the composite showed 85% and 90% efficiency towards the removal of rhodamine B and Nile blue dyes respectively. Thus, the CuO-SiO2 nanocomposite showed better efficiency toward removal of Nile blue as compared to rhodamine B dye while keeping other experimental variables constant. This can be attributed to the structure-property relationships and compatibility of a catalyst with the molecular structures of dyes.


Asunto(s)
Colorantes , Dióxido de Silicio , Cobre , Ecosistema , Oxazinas , Rodaminas , Agua
9.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808726

RESUMEN

There has been very limited work on the control loading and release of the drugs aprepitant and sofosbuvir. These drugs need a significant material for the control of their loading and release phenomenon that can supply the drug at its target site. Magnetic nanoparticles have characteristics that enable them to be applied in biomedical fields and, more specifically, as a drug delivery system when they are incorporated with a biocompatible polymer. The coating with magnetic nanoparticles is performed to increase efficiency and reduce side effects. In this regard, attempts are made to search for suitable materials retaining biocompatibility and magnetic behavior. In the present study, silica-coated iron oxide nanoparticles were incorporated with core-shell particles made of poly(2-acrylamido-2-methylpropane sulfonic acid)@butyl methacrylate to produce a magnetic composite material (MCM-PA@B) through the free radical polymerization method. The as-prepared composite materials were characterized through Fourier-transform infrared (FTIR)spectroscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive X-Ray Analysis (EDX), and thermogravimetric analysis (TGA), and were further investigated for the loading and release of the drugs aprepitant and sofosbuvir. The maximum loading capacity of 305.76 mg/g for aprepitant and 307 mg/g for sofosbuvir was obtained at pH 4. Various adsorption kinetic models and isotherms were applied on the loading of both drugs. From all of the results obtained, it was found that MCM-PA@B can retain the drug for more than 24 h and release it slowly, due to which it can be applied for the controlled loading and targeted release of the drugs.

10.
Crit Rev Anal Chem ; 52(7): 1572-1582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33722113

RESUMEN

Advanced methodologies were applied for the detection of some elements at trace levels in edible oils. Trace elements play a role in oil stability, quality of edible oils and fats. In the present study, problems were addressed related to simple, cheap, less time consuming and suitable pretreatment advanced methods for suitable sample introduction and calibrations as well as the strategies and techniques are discussed. The present review is aimed to discuss the significance of simplifying sample treatments are offered for trace elements in oils. The period covered by this review is last twenty years. However, the various applications of advanced methodologies including extraction and microextraction. The scope of spectrometric techniques used for the analysis of trace elements in edible oils was discussed by new instrumental development trends.


Asunto(s)
Oligoelementos , Aceites de Plantas/análisis , Aceites de Plantas/química , Oligoelementos/análisis
11.
Curr Pharm Des ; 28(5): 352-367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34514984

RESUMEN

Polyethylene glycols (PEG) are water-soluble non-ionic polymeric molecules. PEG and PEG-based materials are used for various important applications, such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications, specifically their use in drug delivery.


Asunto(s)
Nanopartículas , Polietilenglicoles , Sistemas de Liberación de Medicamentos , Humanos , Polímeros , Andamios del Tejido
12.
Front Bioeng Biotechnol ; 9: 601988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634082

RESUMEN

The innate structural and functional properties of bacterial cellulose (BC) have been greatly improved by developing its composites with other materials for its applications in different fields. In the present study, BC-Aloe vera (BCA) gel composite with high tensile strength was ex situ developed and characterized for its potential applications in environmental and medical fields. FE-SEM micrographs showed the impregnation of Aloe vera gel into the fibril network of BC. The dry weight analysis showed the addition of 40 wt.% Aloe vera contents into the BC matrix. The addition of Aloe vera resulted in a 3-fold increase in the mechanical strength of BCA composite. The critical strain or stress concentration points were accurately identified in the composite using a three-dimensional digital image correlation (3D-DIC) system. The BCA composite retained water for an extended period of up to 70 h. The BCA composite effectively adsorbed Cu, Co, Fe, and Zn metals. Moreover, the BCA composite supported the adhesion and proliferation of MC3T3-E1 cells. The findings of this study suggest that the developed BCA composite could find multipurpose applications in different fields.

13.
ACS Appl Mater Interfaces ; 13(1): 924-931, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33397082

RESUMEN

The freeze casting process has been widely used for fabricating aerogels due to its versatile and environmentally friendly nature. This process offers a variety of tools to tailor the entire micropore morphology of the final product in a monolithic fashion through manipulation of the freezing kinetics and precursor suspension chemistry. However, aerogels with nonmonolithic micropore morphologies, having pores of various sizes located in certain regions of the aerogels, are highly desired by certain applications such as controlled drug-delivery, bone tissue engineering, extracellular simulation, selective liquid sorption, immobilized catalysts, and separators. Furthermore, aerogels composed of micropores with predesigned size, shape, and location can open up a new paradigm in aerogel design and lead to new applications. In this study, a general manufacturing approach is developed to control the size, shape, and location of the pores on the aerogel surface by applying a precise control on the local thermal conductivity of the substrate used in a unidirectional freeze casting process. With our method, we created patterned low and high thermal conductivity regions on the substrate by depositing patterned photoresist polymer features. The photoresist polymer has a much lower thermal conductivity, which resulted in lower cooling/freezing rates compared to the silicon substrate. Patterned thermal conductivity created a designed temperature profile yielding to local regions with faster and slower freezing rates. Essentially, we fabricated aerogels whose micropore morphology on their surface was a replica of the patterned substrates in terms of size and location of the micropores. Using the same substrates, we further showed the possibility of 3D printed aerogels with precisely controlled, surface micropore morphologies. To the best of our knowledge, this is the first study that reports aerogels having micropore morphologies (e.g., size, shape, and location) that are precisely controlled through locally controlled thermal conductivity of the substrates.

14.
RSC Adv ; 11(13): 7187-7204, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423256

RESUMEN

Magnetic materials have brought innovations in the field of advanced materials. Their incorporation in aerogels has certainly broadened their application area. Magnetic aerogels can be used for various purposes from adsorbents to developing electromagnetic interference shielding and microwave absorbing materials, high-level diagnostic tools, therapeutic systems, and so on. Considering the final use and cost, these can be fabricated from a variety of materials using different approaches. To date, several studies have been published reporting the fabrication and uses of magnetic aerogels. However, to our knowledge, there is no review that specifically focuses only on magnetic aerogels, so we attempted to overview the main developments in this field and ended our study with the conclusion that magnetic aerogels are one of the emerging and futuristic advanced materials with the potential to offer multiple applications of high value.

15.
Curr Pharm Des ; 26(45): 5807-5818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33143621

RESUMEN

Aerogels are a class of advanced materials having the lowest density with extraordinary characteristics of high surface area, extreme porosity, lowest thermal conductivity, and tunable surface chemistry. Aerogels of silica, alumina, carbon, metals, metal oxides, clay, cellulose, gelatin, chitosan, synthetic polymers and many others have attracted much interest for different potential applications. Several attempts have been made to improve the characteristics and performance efficiency of the aerogels. One of those is to fabricate composite aerogels to be used in several applications. In designing composite aerogels for biomedical and environmental purposes, the nature of the ingredient materials along with their net efficiency and cost are important to be considered. In this regard, various compositions of composite aerogels have been explored by researchers to make them suitable for use in these applications. In the present study, an attempt has been made to briefly summarize various studies of composite aerogels for biomedical and environmental applications.


Asunto(s)
Celulosa , Quitosano , Geles , Humanos , Porosidad , Dióxido de Silicio
16.
J Pharm Anal ; 10(2): 109-122, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32373384

RESUMEN

Hollow-fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) are miniaturized extraction techniques, and have been coupled with various analytical instruments for trace analysis of heavy metals, drugs and other organic compounds, in recent years. HF-LPME and EME provide high selectivity, efficient sample cleanup and enrichment, and reduce the consumption of organic solvents to a few micro-liters per sample. HF-LPME and EME are compatible with different analytical instruments for chromatography, electrophoresis, atomic spectroscopy, mass spectrometry, and electrochemical detection. HF-LPME and EME have gained significant popularity during the recent years. This review focuses on hollow fiber based techniques (especially HF-LPME and EME) of heavy metals and pharmaceuticals (published 2017 to May 2019), and their combinations with atomic spectroscopy, UV-VIS spectrophotometry, high performance liquid chromatography, gas chromatography, capillary electrophoresis, and voltammetry.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-823988

RESUMEN

Hollow-fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) are miniaturized extraction techniques, and have been coupled with various analytical instruments for trace analysis of heavy metals, drugs and other organic compounds, in recent years. HF-LPME and EME provide high selectivity, efficient sample cleanup and enrichment, and reduce the consumption of organic sol-vents to a few micro-liters per sample. HF-LPME and EME are compatible with different analytical in-struments for chromatography, electrophoresis, atomic spectroscopy, mass spectrometry, and electrochemical detection. HF-LPME and EME have gained significant popularity during the recent years. This review focuses on hollow fiber based techniques (especially HF-LPME and EME) of heavy metals and pharmaceuticals (published 2017 to May 2019), and their combinations with atomic spectroscopy, UV-VIS spectrophotometry, high performance liquid chromatography, gas chromatography, capillary elec-trophoresis, and voltammetry.

18.
Curr Pharm Des ; 25(34): 3633-3644, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31626581

RESUMEN

Core-shell polymers represent a class of composite particles comprising of minimum two dissimilar constituents, one at the center known as a core which is occupied by the other called shell. Core-shell molecularly imprinting polymers (CSMIPs) are composites prepared via printing a template molecule (analyte) in the coreshell assembly followed by their elimination to provide the everlasting cavities specific to the template molecules. Various other types of CSMIPs with a partial shell, hollow-core and empty-shell are also prepared. Numerous methods have been reported for synthesizing the CSMIPs. CSMIPs composites could develop the ability to identify template molecules, increase the relative adsorption selectivity and offer higher adsorption capacity. Keen features are measured that permits these polymers to be utilized in numerous applications. It has been developed as a modern technique with the probability for an extensive range of uses in selective adsorption, biomedical fields, food processing, environmental applications, in utilizing the plant's extracts for further applications, and sensors. This review covers the approaches of developing the CSMIPs synthetic schemes, and their application with special emphasis on uses in the biomedical field, food care subjects, plant extracts analysis and in environmental studies.


Asunto(s)
Impresión Molecular , Nanocompuestos/química , Polímeros/química , Adsorción , Investigación Biomédica , Alimentos , Extractos Vegetales
19.
Curr Pharm Des ; 25(34): 3681-3691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31604407

RESUMEN

PURPOSE: Leukemia, one of the major cancers, affects a large proportion of people around the world. Better treatment options for leukemia are required due to a large number of side effects associated with current therapeutic regimens. In the present study, we sought to determine the pathway of triggering apoptosis of leukemic cells by Ocimum basilicum (O. basilicum) plant extract. MATERIALS/METHODS: Methanolic extract of the O. basilicum plant material was prepared. The crude extract was fractionated into several fractions through column chromatography using ethyl acetate and n-hexane as eluting solvents. Cell viability of leukemic cells was assessed via Cell titer GLO assay and apoptosis was measured through Annexin V/PI staining. Two apoptotic molecules JNK and caspases were analyzed through western blotting while pro-inflammatory cytokines TNFα, CCL2 and CXCL8 using qPCR. Fractions were characterized through LC-MS. RESULTS: The most potent with lowest IC50 values among the fractions were BF2 (2:8 n-hexane:ethyl acetate) and BF3 (3:7 n-hexane:ethyl acetate). Cytotoxicity was associated with apoptosis. Apoptosis was found caspasedependent and P-JNK activation was detected sustained. A significant increase in the level of TNF α and a decrease in the level of CXCL8 were observed in BF2 and BF3 treated cells. CONCLUSION: The fractions of O. basilicum extract were found to kill cells following JNK pathway activation. Excellent results were obtained with BF2 and BF3 probably due to predominant Epicatechin and Cinnamic acid derivatives in these fractions.


Asunto(s)
Apoptosis , Caspasa 3 , Leucemia , Sistema de Señalización de MAP Quinasas , Ocimum basilicum/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Humanos , Factor de Necrosis Tumoral alfa
20.
Curr Pharm Des ; 25(34): 3672-3680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31604415

RESUMEN

PURPOSE: The purpose of the present study was to make a biocompatible agar based composite material via incorporation of appropriate additives within the agar matrix for potential applications in drug delivery and biomedical fields. METHODOLOGY: Agar based composites were prepared by the incorporation of magnetic iron oxide nano particles, graphite and sodium aluminum as additives in different proportions within the agar matrix by a simple thermophysico- mechanical method. The as prepared agar based composites were then characterized by different techniques i.e. FTIR, SEM, TGA, XRD and EDX analyses. The FTIR peaks confirmed the presence of each component in the agar composite. SEM images showed the uniform distribution of each component in the agar composite. TGA study showed the thermal stability range of different composite sheets. XRD pattern revealed the crystallinity and EDX analysis confirmed the elemental composition of the prepared composites. The prepared agar based composites were evaluated for antimicrobial activities against three pathogenic bacterial strains Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia and the result indicated efficient antimicrobial activities for all composites. CONCLUSION: From the overall study, it was concluded that due to the non-toxic nature, thermal stability and excellent antibacterial properties, the prepared agar based composites can receive potential biomedical applications.


Asunto(s)
Agar/química , Sistemas de Liberación de Medicamentos , Nanocompuestos/química , Antibacterianos , Compuestos Férricos , Fenómenos Magnéticos , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...