Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1120329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816919

RESUMEN

Introduction: Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods: Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results: Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion: The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.

2.
Am J Clin Exp Urol ; 9(6): 416-434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993263

RESUMEN

The evolving paradigm of the molecular classification of bladder cancer requires models that represent the classifications with less heterogeneity. Robust transcriptome based molecular classifications are essential to address tumor heterogeneity. Patient derived models (PDMs) are a powerful preclinical tool to study specific tumor compartments. We tested if the consensus molecular subtype analysis was applicable to PDMs and evaluated the tumor compartment each model represents. PDMs derived from surgical specimens were established as xenografts (PDX), organoids (PDO), and spheroids (PDS). The surgical specimens and PDMs were molecularly characterized by RNA sequencing. PDMs that were established in immune deficient mice or in vitro significantly downregulated transcripts related to the immune and stromal compartments compared to the surgical specimens. However, PDMs upregulate a patient-specific bladder cancer cell signal which allowed for analysis of cancer cell pathways independent of the tumor microenvironment. Based on transcriptomic signatures, PDMs are more similar to their surgical specimen than the model type; indicating that the PDMs retained unique features of the tumor from which the PDM was derived. When comparing models, PDX models were the most similar to the surgical specimen, while PDO and PDS models were most similar to each other. When the consensus molecular subtype classification system was applied to both the surgical samples and the three PDMs, good concordance was found between all samples indicating that this system of classification can be applied to PDO and PDS models. PDMs reduce tumor heterogeneity and allow analysis of tumor cells while maintaining the gene expression profile representative of the original tumor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...