Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.022
Filtrar
1.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731570

RESUMEN

This comprehensive review addresses the need for sustainable and efficient energy storage technologies against escalating global energy demand and environmental concerns. It explores the innovative utilization of waste materials from oil refineries and coal processing industries as precursors for carbon-based electrodes in next-generation energy storage systems, including batteries and supercapacitors. These waste-derived carbon materials, such as semi-coke, coal gasification fine ash, coal tar pitch, petroleum coke, and petroleum vacuum residue, offer a promising alternative to conventional electrode materials. They present an optimal balance of high carbon content and enhanced electrochemical properties while promoting environmental sustainability through effectively repurposing waste materials from coal and hydrocarbon industries. This review systematically examines recent advancements in fabricating and applying waste-derived carbon-based electrodes. It delves into the methodologies for converting industrial by-products into high-quality carbon electrodes, with a particular emphasis on carbonization and activation processes tailored to enhance the electrochemical performance of the derived materials. Key findings indicate that while higher carbonization temperatures may impede the development of a porous structure, using KOH as an activating agent has proven effective in developing mesoporous structures conducive to ion transport and storage. Moreover, incorporating heteroatom doping (with elements such as sulfur, potassium, and nitrogen) has shown promise in enhancing surface interactions and facilitating the diffusion process through increased availability of active sites, thereby demonstrating the potential for improved storage capabilities. The electrochemical performance of these waste-derived carbon materials is evaluated across various configurations and electrolytes. Challenges and future directions are identified, highlighting the need for a deeper understanding of the microstructural characteristics that influence electrochemical performance and advocating for interdisciplinary research to achieve precise control over material properties. This review contributes to advancing electrode material technology and promotes environmental sustainability by repurposing industrial waste into valuable resources for energy storage. It underscores the potential of waste-derived carbon materials in sustainably meeting global energy storage demands.

2.
Microsc Res Tech ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729775

RESUMEN

The Pteridaceae family, known for its taxonomic complexity, presents challenges in identification due to high variability among its species. This study investigates the spore morphology employing both SEM and LM techniques in 10 Pteridaceae taxa phytogeographicaly Sino-Himalayan, Malesian, and European elements in Pakistan. The taxa include Adiantum capillus-veneris, A. incisum, A. venustum, Aleuritopteris bicolor, Oeosporangium nitidulum, O. pteridioides, Onychium cryptogrammoides, O. vermae, Pteris cretica, and P. vittata. The objective is to assess their taxonomic relevance and develop a spore-based taxonomic key. Findings indicate differences in spore shape, sizes, exospore thickness, and in surface ornamentation highlighting the potential for taxonomic differentiation. Spores are trilete, and notable differences are observed in the dimension of spores in both distal and proximal sides. Equatorial dimensions vary between 35 and 50 µm, while the polar diameter ranges from 29 to 50 µm. SEM revealed different spore ornamentation types that show several useful characteristics establishing valuable taxonomic variations. The studied Adiantum taxa feature a perispore with tubercules and a micro-granulose surface. The spores of examined Oeosporangium and Aleuritopteris taxa shows cristate sculptures with variable ornamentations. Both species of Onychium have tuberculate-pleated tubercles with sinuous folds on both distal and proximal sides. The surface ornamentation among examined Pteris taxa show variability. PCA analysis indicated that spore quantitative data identified distinct groups, underscoring taxonomic significance. Nevertheless, there was variation observed in surface ornamentation and spore shape, indicating the potential for discrimination among taxa. RESEARCH HIGHLIGHTS: Spore morphology of 10 Pteridaceae taxa has been investigated through LM and SEM. Investigated species shows differences in spore shape, sizes, exospore thickness, and in surface ornamentation. Ornamentation on the perispore provides several valuable characteristics, establishing useful taxonomic distinctions. Spore morphological analysis is effective at the generic level, with minor distinctions discernible at the species level.

3.
ACS Appl Mater Interfaces ; 16(19): 25090-25100, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709646

RESUMEN

The selective electrocatalytic reduction of nitrobenzene (NB) to aniline demands a desirable cathodic catalyst to overcome the challenges of the competing hydrogen evolution reaction (HER), a higher overpotential, and a lower selectivity. Here, we deposit Co-doped 1T MoS2 on Ti mesh by the solvothermal method with different doping percentages of Co as x % Co-MoS2 (where x = 3, 5, 8, 10, and 12%). Because of the lowest overpotential, lower charge-transfer resistance, strong suppression of the competing HER, and higher electrochemical surface area, 8% Co-MoS2 achieves 94% selectivity of aniline with 54% faradaic efficiency. The reduction process follows first-order dynamics with a reaction coefficient of 0.5 h-1. Besides, 8% Co-MoS2 is highly stable and retains 81% selectivity even after 8 cycles. Mechanistic studies showed that the selective and exothermic adsorption of the nitro group at x % Co-MoS2 leads to a higher rate of NB reduction and higher selectivity of aniline. The aniline product is successfully removed from the solution by polymerization at FTO. This study signifies the impact of doping metal atoms in tuning the electronic arrangement of 1T-MoS2 for the facilitation of organic transformations.

4.
Fitoterapia ; : 106024, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763410

RESUMEN

The uncontrolled hyperglycemia that characterizes diabetes mellitus (DM) causes several complications in the organism. DM is among the major causes of deaths, and the limited efficacy of current treatments push the search for novel drug candidates, also among natural compounds. We focused our attention on caffeoylmalic acid, a phenolic derivative extracted from Urtica dioica, a plant investigated for its potential against type 2 DM. This compound was tested for its antidiabetic activity in vitro through a glucose uptake assay, in vivo in a mouse DM model and through molecular docking towards α-amylase and α-glucosidase. The effects on glucose blood level, liver enzymes, insulin and creatinine levels as well as on lipid and blood parameters, considered biochemical markers of diabetes, were also evaluated. The results showed an antidiabetic activity in vitro and in vivo, as the compound stimulates glucose absorbtion and reduces blood glucose levels. Moreover, it ameliorates lipid profile, liver and blood parameters, with moderate effect on insulin secretion. Taken together, these findings pave the way for the compounds from this class of caffeoylmalic acid as potential antidiabetic compounds.

5.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732910

RESUMEN

IoT has seen remarkable growth, particularly in healthcare, leading to the rise of IoMT. IoMT integrates medical devices for real-time data analysis and transmission but faces challenges in data security and interoperability. This research identifies a significant gap in the existing literature regarding a comprehensive ontology for vulnerabilities in medical IoT devices. This paper proposes a fundamental domain ontology named MIoT (Medical Internet of Things) ontology, focusing on cybersecurity in IoMT (Internet of Medical Things), particularly in remote patient monitoring settings. This research will refer to similar-looking acronyms, IoMT and MIoT ontology. It is important to distinguish between the two. IoMT is a collection of various medical devices and their applications within the research domain. On the other hand, MIoT ontology refers to the proposed ontology that defines various concepts, roles, and individuals. MIoT ontology utilizes the knowledge engineering methodology outlined in Ontology Development 101, along with the structured life cycle, and establishes semantic interoperability among medical devices to secure IoMT assets from vulnerabilities and cyberattacks. By defining key concepts and relationships, it becomes easier to understand and analyze the complex network of information within the IoMT. The MIoT ontology captures essential key terms and security-related entities for future extensions. A conceptual model is derived from the MIoT ontology and validated through a case study. Furthermore, this paper outlines a roadmap for future research, highlighting potential impacts on security automation in healthcare applications.


Asunto(s)
Seguridad Computacional , Internet de las Cosas , Humanos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Telemedicina/métodos
6.
Cureus ; 16(4): e58496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38765447

RESUMEN

OBJECTIVES: The current study used the deep machine learning approach to differentiate human blood specimens from cow, goat, and chicken blood stains based on cell morphology. METHODS: A total of 1,955 known Giemsa-stained digitized images were acquired from the blood of humans, cows, goats, and chickens. To train the deep learning models, the well-known VGG16, Resnet18, and Resnet34 algorithms were used. Based on the image analysis, confusion matrices were generated. RESULTS: Findings showed that the F1 score for the chicken, cow, goat, and human classes were all equal to 1.0 for each of the three algorithms. The Matthews correlation coefficient (MCC) was 1 for chickens, cows, and humans in all three algorithms, while the MCC score was 0.989 for goats by ResNet18, and it was 0.994 for both ResNet34 and VGG16 algorithms. The three algorithms showed 100% sensitivity, specificity, and positive and negative predictive values for the human, cow, and chicken cells. For the goat cells, the data showed 100% sensitivity and negative predictive values with specificity and positive predictive values ranging from 98.5% to 99.6%. CONCLUSION: These data showed the importance of deep learning as a potential tool for the differentiation of the species of origin of fresh crime scene blood stains.

7.
RSC Adv ; 14(23): 16546-16559, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38774615

RESUMEN

By using a convergent methodology, a unique series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole-triazole core was synthesized and the structures of these hybrid molecules, 9a-k, were corroborated through spectral analyses. The in vitro studies of these multi-functional molecules demonstrated their potent mushroom tyrosinase inhibition relative to the standard used. The kinetics mechanism was exposed by lineweaver-burk plots which revealed that, 9c, inhibited mushroom tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.016 µM. The computational study was also consistent with the experimental results and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to mushroom tyrosinase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for the diseases associated with the over-expression of this enzyme.

8.
Am J Cardiol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723857

RESUMEN

Aortic stenosis is a common and significant valve condition requiring bioprosthetic heart valves with transcatheter aortic valve replacement (TAVR) being strongly recommended for high-risk patients or patients over 75 years. This meta-analysis aimed to pool existing data on postprocedural clinical as well as echocardiographic outcomes comparing valve-in-valve (ViV)-TAVR to redo-surgical aortic valve replacement to assess the short-term and medium-term outcomes for both treatment methods. A systematic literature search on Cochrane Central, Scopus, and Medline (PubMed interface) electronic databases from inception to August 2023. We used odds ratios (OR) for dichotomous outcomes and mean differences (MD) for continuous outcomes. Twenty-four studies (25,216 patients) were pooled with a mean follow-up of 16.4 months. The analysis revealed that ViV-TAVR group showed a significant reduction in 30-day mortality (OR 0.50, 95% confidence interval [CI] 0.43 to 0.58, p <0.00001), new-onset atrial fibrillation (OR 0.34, 95% CI 0.17 to 0.67, p = 0.002), major bleeding event (OR 0.28, 95% CI 0.17 to 0.45, p <0.00001) and lower rate of device success (OR 0.25, 95% CI 0.12 to 0.53, p = 0.0003). There were no significant differences between either group when assessing 1-year mortality, stroke, myocardial infarction, postoperative left ventricular ejection fraction, and effective orifice area. ViV-TAVR cohort showed a significantly increased incidence of paravalvular leaks, aortic regurgitation, and increased mean aortic valve gradient. ViV-TAVR is a viable short-term option for elderly patients with high co-morbidities and operative risks, reducing perioperative complications and improving 30-day mortality with no significant cardiovascular adverse events. However, both treatment methods present similar results on short-term to medium-term complications assessment.

9.
J Chemother ; : 1-14, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706404

RESUMEN

Irinotecan is a critical anticancer drug used to treat metastatic colorectal cancer and advanced pancreatic ductal adenocarcinoma by obstructing topoisomerase 1; however, it can cause minor-to-severe and life-threatening adverse effects. UDP glucuronosyltransferase family 1 member A1 (UGT1A1) polymorphisms increase the risk of irinotecan-induced neutropenia and diarrhea. Hence, screening for UGT1A1 polymorphisms before irinotecan-based chemotherapy is recommended to minimize toxicity, whereas liposomes offer the potential to deliver irinotecan with fewer side effects in patients with pancreatic ductal adenocarcinoma. This review presents a comprehensive overview of the effects of genotype-guided dosing of irinotecan on UGT1A1*28 and UGT1A1*6 variants, incorporating pharmacogenomic research, optimal regimens for metastatic colorectal and pancreatic cancer treatment using irinotecan, guidelines for toxicity reduction, and an evaluation of the cost-effectiveness of UGT1A1 genotype testing.

10.
Front Cell Infect Microbiol ; 14: 1330475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716193

RESUMEN

The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.


Asunto(s)
Malaria , Mosquitos Vectores , Wolbachia , Malaria/prevención & control , Animales , Humanos , Mosquitos Vectores/microbiología , Control de Mosquitos/métodos , Pakistán
11.
Chemosphere ; : 142335, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754494

RESUMEN

In Japanese agricultural lands, nitrate-nitrogen contamination of soil and groundwater often occurs due to the application of livestock excrements and compost. Therefore, rural soils in Japan were sampled and analyzed for nitrate-nitrogen leaching, heavy metal content, and sterols associated with livestock excrement and compost to calculate contamination risk indicators. The results were analyzed using self-organizing maps and cluster analysis. Nitrate-nitrogen content using water extraction was detected in most of the sampled soils. In addition, many samples from areas that were already severely contaminated with nitrate-nitrogen showed particularly high concentrations. Coprostanol, an indicator of fecal contamination, was detected in more than half of the samples. The main source of nitrate-nitrogen contamination in these areas is livestock excrement and compost. Self-organization maps showed that areas with high nitrate-nitrogen contamination also corresponded to areas with high copper and zinc soil contents. The self-organization maps and cluster analysis resulted in five clusters: a nitrate-contaminated group mainly originating from livestock excrement and compost, a heavy metal-contaminated group, a general group, a nitrate-contaminated group mainly originating from chemical fertilizers, and a contaminated group with potentially hazardous substances requiring attention. Authorities and decision-makers can use the results to prioritize areas requiring remediation.

12.
Heliyon ; 10(9): e29658, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694111

RESUMEN

In the current study, seven (7) aurone derivatives (ADs) were synthesized and employed to in-vitro LOX and COX-2 assays, in-vivo models of acetic acid-induced mice writhing, formalin-induced mice paw licking and tail immersion test to evaluate their analgesic potential at the doses of 10 mg and 20 mg/kg body weight. Molecular docking was performed to know the active binding site at both LOX and COX-2 as compared to standard drugs. Among the ADs, 2-(3,4-dimethoxybenzylidene)benzofuran-3(2H)-one (WE-4)possessed optimal LOX and COX-2 inhibitory strength (IC50=0.30 µM and 0.22 µM) as compared to standard (ZileutonIC50 = 0.08 µM, CelecoxibIC50 = 0.05 µM). Similarly in various pain models compound WE-4 showed significantly (p < 0.05) highest percent analgesic potency as compared to control at a dose of 20 mg/kg i.e. 77.60 % analgesic effect in acetic acid model, 49.97 % (in Phase-1) and 70.93 % (inPhase-2) analgesic effect in formalin pain model and 74.71 % analgesic response in tail immersion model. By the administration of Naloxone, the tail flicking latencies were reversed (antagonized) in all treatments. The WE-4 (at 10 mg/kg and 20 mg/kg) was antagonized after 90 min from 11.23 ± 0.93 and 13.41 ± 1.21 to 5.30 ± 0.48 and 4.80 ± 0.61 respectively as compared to standard Tramadol (from 17.74 ± 1.33 to 3.70 ± 0.48), showing the opiodergic receptor involvement. The molecular docking study of ADs revealed that WE-4 had a higher affinity for LOX and COX-2 with docking scores of -4.324 and -5.843 respectively. As a whole, among the tested ADs, compound WE-4 demonstrated excellent analgesic effects that may have been caused by inhibiting the LOX and COX-2 pathways.

13.
Cureus ; 16(4): e57371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38694641

RESUMEN

BACKGROUND: The aims and ambitions of a surgeon in the early years of his professional career are to make a good reputation by providing excellent patient outcomes and avoiding complex and difficult surgeries. Revision lumbar spine surgeries (RLSSs) pose a significant challenge in terms of surgical management, as the moribund anatomy increases the risk of complications, adding to an unlikely outcome. OBJECTIVE: We conducted this study to determine the clinical indications and outcomes of RLSSs performed by an early career neurosurgeon. MATERIALS AND METHODS: This cross-sectional study was conducted after approval from the hospital's ethical committee, and data was collected in late December of 2022 and early January 2023, from retrospective records for a single early career neurosurgeon. A form was filled with each patient's data, such as age, gender, time since surgery, indication for surgery, operative findings, types of surgery performed, etc. All variables were noted for the patient and were further categorized, based on the clinical records, into many sub-categories. RESULTS: Almost 400 lumbar spine surgeries were performed by the surgeon, and about 45 (11.25%) were revision surgeries, and the full record was available for 42 surgeries. These patients' ages ranged from 22 to 70 years, and the mean age was about 46.74±13.29 SD. The common symptoms leading to revision surgeries were numbness and pain in 17 (40.5%) patients each; common per-operative findings were recurrent disc in eight patients (19%), infection in nine patients (21.4%), and fibrosis/adhesions in 16 (38.1%); most common surgeries performed were diskectomy in 11 (26.2%) and diskectomy plus release of adhesions in 12 (28.6%); complications occurred in 14 (33%), and good to excellent outcomes was recorded in 29 (69%) cases.  Conclusion: RLSSs are difficult compared to first-time lumbar spine surgeries, and the moribund anatomy predisposes to complications, and better shall be dealt with great care and, at the minimum, shall be embarked upon as a team.

14.
Nat Commun ; 15(1): 3833, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714654

RESUMEN

Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.


Asunto(s)
Antígenos Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana , Aprendizaje Automático , Estaciones del Año , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Antígenos Virales/inmunología , Antígenos Virales/genética , Pruebas de Inhibición de Hemaglutinación , Variación Antigénica/genética , Vacunas contra la Influenza/inmunología
16.
Dalton Trans ; 53(20): 8680-8691, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38700274

RESUMEN

Polyaniline (PANI) stands out as a highly promising conducting polymer with potential for advanced utilization in high-performance pseudocapacitors. Therefore, there exists a pressing need to bolster the structural durability of PANI, achievable by developing composite materials that can enhance its viability for supercapacitor applications. In this particular study, a pioneering approach was undertaken to produce a novel NiMn2O4/PANI supercapacitor electrode material. A comprehensive array of analytical techniques was employed to ascertain the structural configuration, morphology, oxidation states of elements, composition, and surface characteristics of the electrode material. The electrochemical evaluation of the NiMn2O4/PANI composite shows a specific capacitance (Cs) of 1530 ± 2 F g-1 at 1 A g-1. Significantly, the composite material displays an outstanding 93.61% retention of its capacity after an extensive 10 000 cycles, signifying remarkable cycling stability, while the 2-electrode configuration reveals a Cs value of 764 F g-1 at 5 mV s-1 and 826 F g-1 at 1 A g-1 with a smaller charge transfer resistance (Rct) value of 0.67 Ω. Chronoamperometric tests showed excellent stability of the fabricated material up to 50 h. This significant advancement bears immense promise for its potential implementation in high-efficiency energy storage systems and heralds a new phase in the development of supercapacitor technology with improved stability and performance metrics.

17.
Blood Adv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564774

RESUMEN

Clonal cytopenia of undetermined significance (CCUS) is defined by a myeloid driver mutation in the context of otherwise unexplained cytopenia. CCUS has an inherent risk of progressing to myeloid neoplasm. However, it is unknown how exposure to previous cytotoxic therapy may impact the risk of progression and survival. We stratified CCUS patients by prior exposure to DNA-damaging therapy. Of 151 patients, 46 (30%) had received cytotoxic therapy and were classified as therapy-related CCUS (t-CCUS), whereas 105 (70%) had de novo CCUS. A lower proportion of t-CCUS had hypercellular marrows (17.8% vs. 44.8%, P=0.002) but had higher median bone marrow blast percentages. After a median follow up of 2.2 years, t-CCUS had significantly shorter PFS (1.8 vs. 6.3 years, HR 2.1, P=0.007) and median OS (3.6 years vs. not reached, HR 2.3, P=0.007) compared to CCUS. Univariable and multivariable time-to-event analyses showed that exposure to cytotoxic therapy independently accounted for inferior PFS and OS. Despite the similarities in clinical presentation between CCUS and t-CCUS, we show that exposure to prior cytotoxic therapies was an independent risk-factor for inferior outcomes. This suggests that t-CCUS represents a unique clinical entity that needs more stringent monitoring or earlier intervention strategies.

18.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38559218

RESUMEN

Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.

19.
Opt Lett ; 49(7): 1680-1683, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560835

RESUMEN

With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of difference-frequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion. Our results suggest that the parametric amplification regime becomes feasible on a scale of hundreds of nanometers and spontaneous parametric downconversion on the scale of tens of nanometers, opening up new exciting opportunities for developing building blocks of photonic metasurfaces.

20.
Clin Exp Dermatol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589980

RESUMEN

BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder affecting the skinfold regions. There is growing appreciation of the need for socioeconomic factors to be included in multidisciplinary assessments of HS. However, knowledge regarding HS and workplace function is limited. OBJECTIVES: To assess the relationship between HS and workplace function. METHODS: Cinahl, Embase, MedLine, PsycInfo and PubMed were systematically searched to collect data from studies in which validated surveys of workplace function were administered to HS patients. RESULTS: Out of 1,932 publications, twelve studies were included in this review and seven reported sufficient data for meta-analysis. Included studies encompassed 5,187 HS patients and no controls. All studies employed the Work Productivity and Activity Impairment questionnaire, reporting percentage scores for absenteeism, presenteeism, total work productivity impairment (TWPI) and total activity impairment (TAI). Pooled mean scores for HS were calculated as 10.17% (95%CI 8.68-11.66) for absenteeism, 31.13% (95%CI 25.02-37.23) for presenteeism, 34.25% (95%CI 29.37-39.14) for TWPI, and 42.23% (95%CI 38.56-45.89) for TAI. Significant heterogeneity was identified and most studies were of 'poor' to 'fair' quality. CONCLUSIONS: Current evidence suggests considerable impairment of workplace functioning in HS patients. Our findings point to a significant unmet treatment need with respect to improving working capability in HS. The extant literature is inadequate to reliably assess the mechanisms underlying this effect or to comparatively assess the capabilities of HS therapies to improve workplace function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...