Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35164054

RESUMEN

Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanoparticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization value attained was 45 emu g-1. Virtual screenings of the MPAO's potential bioactivities and safety profile were performed using PASS analysis and ADMET studies before the synthesis step. For the DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes it a broad-spectrum candidate in biomedicine and nanomedicine.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Nanopartículas de Magnetita/química , Propiedades de Superficie
2.
PeerJ ; 7: e7651, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31768301

RESUMEN

Oxidative stress can be reduced substantially using nanoantioxidant materials by tuning its surface morphological features up to a greater extent. The physiochemical, biological and optical properties of the nanoantioxidants can be altered by controlling their size and shape. In view of that, an appropriate synthesis technique should be adopted with optimization of the process variables. Properties of magnetite nanoparticles (IONP) can be tailored to upgrade the performance of biomedicine. Present research deals with the functionalization IONP using a hydrophobic agent of quercetin (Q). The application of quercetin will control its size using both the functionalization method including in-situ and post-synthesis technique. In in-situ techniques, the functionalized magnetite nanoparticles (IONP@Q) have average particles size 6 nm which are smaller than the magnetite (IONP) without functionalization. After post functionalization technique, the average particle size of magnetite IONP@Q2 determined was 11 nm. The nanoparticles also showed high saturation magnetization of about 51-59 emu/g. Before starting the experimental lab work, Prediction Activity Spectra of Substances (PASS) software was used to have a preliminary idea about the biological activities of Q. The antioxidant activity was carried out using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antibacterial studies were carried out using well diffusion method. The results obtained were well supported by the simulated results. Furthermore, the values of the half maximal inhibitory concentration (IC50) of the DPPH antioxidant assay were decreased using the functionalized one and it exhibited a 2-3 fold decreasing tendency than the unfunctionalized IONP. This exhibited that the functionalization process can easily enhance the free radical scavenging properties of IONPs up to three times. MIC values confirms that functionalized IONP have excellent antibacterial properties against the strains used (Staphylococcus aureus, Bacillus subtilis and Escherichia coli) and fungal strains (Aspergillus niger, Candida albicans, Trichoderma sp. and Saccharomyces cerevisiae). The findings of this research showed that the synthesized nanocomposite has combinatorial properties (magnetic, antioxidant and antimicrobial) which can be considered as a promising candidate for biomedical applications. It can be successfully used for the development of biomedicines which can be subsequently applied as antioxidant, anti-inflammatory, antimicrobial and anticancer agents.

3.
Nanomaterials (Basel) ; 7(10)2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28981476

RESUMEN

In this research, we report the size-controlled synthesis and surface-functionalization of magnetite with the natural antioxidant gallic acid (GA) as a ligand, using in situ and post-synthesis methods. GA functionalization provided narrow size distribution, with an average particle size of 5 and 8 nm for in situ synthesis of gallic acid functionalized magnetite IONP@GA1 and IONP@GA2, respectively, which are ultra-small particles as compared to unfunctionalized magnetite (IONP) and post functionalized magnetite IONP@GA3 with average size of 10 and 11 nm respectively. All the IONPs@GA samples were found hydrophilic with stable aggregation state. Prior to commencement of experimental lab work, PASS software was used to predict the biological activities of GA and it is found that experimental antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and antimicrobial studies using well diffusion method are in good agreement with the simulated results. Furthermore, the half maximal inhibitory concentration (IC50) values of DPPH antioxidant assay revealed a 2-4 fold decrease as compared to unfunctionalized IONP. In addition to antioxidant activity, all the three IONP@GA proved outstanding antimicrobial activity while testing on different bacterial and fungal strains. The results collectively indicate the successful fabrication of novel antioxidant, antimicrobial IONP@GA composite, which are magnetically separable, efficient, and low cost, with potential applications in polymers, cosmetics, and biomedical and food industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...