Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 8(5): e2850, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24831235

RESUMEN

Intracellular protozoan parasites are causative agents of infectious diseases that constitute major health problems for developing countries. Leishmania sp., Trypanosoma cruzi or Toxoplasma gondii are all obligate intracellular protozoan parasites that reside and multiply within the host cells of mammals, including humans. Following up intracellular parasite proliferation is therefore an essential and a quotidian task for many laboratories working on primary screening of new natural and synthetic drugs, analyzing drug susceptibility or comparing virulence properties of natural and genetically modified strains. Nevertheless, laborious manual microscopic counting of intracellular parasites is still the most commonly used approach. Here, we present INsPECT (Intracellular ParasitE CounTer), an open-source and platform independent software dedicated to automate infection level measurement based on fluorescent DNA staining. It offers the possibility to choose between different types of analyses (fluorescent DNA acquisitions only or in combination with phase contrast image set to further separate intra- from extracellular parasites), and software running modes (automatic or custom). A proof-of-concept study with intracellular Leishmania infantum parasites stained with DAPI (4',6-diamidino-2-phenylindole) confirms a good correspondence between digital results and the "gold standard" microscopic counting method with Giemsa. Interestingly, this software is versatile enough to accurately detect intracellular T. gondii parasites on images acquired with High Content Screening (HCS) systems. In conclusion, INsPECT software is proposed as a new fast and simple alternative to the classical intracellular Leishmania quantification methods and can be adapted for mid to large-scale drug screening against different intracellular parasites.


Asunto(s)
Técnicas Citológicas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Espacio Intracelular/parasitología , Leishmania/aislamiento & purificación , Parasitología/métodos , Programas Informáticos , Algoritmos , Línea Celular , Fibroblastos/citología , Fibroblastos/parasitología , Humanos , Microscopía Fluorescente , Reproducibilidad de los Resultados
2.
BMC Plant Biol ; 13: 122, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23987653

RESUMEN

BACKGROUND: In crops, inflorescence complexity and the shape and size of the seed are among the most important characters that influence yield. For example, rice panicles vary considerably in the number and order of branches, elongation of the axis, and the shape and size of the seed. Manual low-throughput phenotyping methods are time consuming, and the results are unreliable. However, high-throughput image analysis of the qualitative and quantitative traits of rice panicles is essential for understanding the diversity of the panicle as well as for breeding programs. RESULTS: This paper presents P-TRAP software (Panicle TRAit Phenotyping), a free open source application for high-throughput measurements of panicle architecture and seed-related traits. The software is written in Java and can be used with different platforms (the user-friendly Graphical User Interface (GUI) uses Netbeans Platform 7.3). The application offers three main tools: a tool for the analysis of panicle structure, a spikelet/grain counting tool, and a tool for the analysis of seed shape. The three tools can be used independently or simultaneously for analysis of the same image. Results are then reported in the Extensible Markup Language (XML) and Comma Separated Values (CSV) file formats. Images of rice panicles were used to evaluate the efficiency and robustness of the software. Compared to data obtained by manual processing, P-TRAP produced reliable results in a much shorter time. In addition, manual processing is not repeatable because dry panicles are vulnerable to damage. The software is very useful, practical and collects much more data than human operators. CONCLUSIONS: P-TRAP is a new open source software that automatically recognizes the structure of a panicle and the seeds on the panicle in numeric images. The software processes and quantifies several traits related to panicle structure, detects and counts the grains, and measures their shape parameters. In short, P-TRAP offers both efficient results and a user-friendly environment for experiments. The experimental results showed very good accuracy compared to field operator, expert verification and well-known academic methods.


Asunto(s)
Oryza/anatomía & histología , Oryza/crecimiento & desarrollo , Programas Informáticos , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Fenotipo , Sitios de Carácter Cuantitativo , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo
3.
BMC Res Notes ; 5: 642, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23164452

RESUMEN

BACKGROUND: Staphylococcus aureus is both human commensal and an important human pathogen, responsible for community-acquired and nosocomial infections ranging from superficial wound infections to invasive infections, such as osteomyelitis, bacteremia and endocarditis, pneumonia or toxin shock syndrome with a mortality rate up to 40%. S. aureus reveals a high genetic polymorphism and detecting the genotypes is extremely useful to manage and prevent possible outbreaks and to understand the route of infection. One of current and expanded typing method is based on the X region of the spa gene composed of a succession of repeats of 21 to 27 bp. More than 10000 types are known. Extracting the repeats is impossible by hand and needs a dedicated software. Unfortunately the only software on the market is a commercial program from Ridom. FINDINGS: This article presents DNAGear, a free and open source software with a user friendly interface written all in Java on top of NetBeans Platform to perform spa typing, detecting new repeats and new spa types and synchronizing automatically the files with the open access database. The installation is easy and the application is platform independent. In fact, the SPA identification is a formal regular expression matching problem and the results are 100% exact. As the program is using Java embedded modules written over string manipulation of well established algorithms, the exactitude of the solution is perfectly established. CONCLUSIONS: DNAGear is able to identify the types of the S. aureus sequences and detect both new types and repeats. Comparing to manual processing, which is time consuming and error prone, this application saves a lot of time and effort and gives very reliable results. Additionally, the users do not need to prepare the forward-reverse sequences manually, or even by using additional tools. They can simply create them in DNAGear and perform the typing task. In short, researchers who do not have commercial software will benefit a lot from this application.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Secuencias Repetitivas de Ácidos Nucleicos , Programas Informáticos , Proteína Estafilocócica A/genética , Staphylococcus aureus/genética , Algoritmos , Secuencia de Bases , Genotipo , Humanos , Datos de Secuencia Molecular , Proteína Estafilocócica A/clasificación , Staphylococcus aureus/clasificación
4.
Parasit Vectors ; 5: 122, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22713553

RESUMEN

BACKGROUND: Studies on malaria vector ecology and development/evaluation of vector control strategies often require measures of mosquito life history traits. Assessing the fecundity of malaria vectors can be carried out by counting eggs laid by Anopheles females. However, manually counting the eggs is time consuming, tedious, and error prone. METHODS: In this paper we present a newly developed software for high precision automatic egg counting. The software written in the Java programming language proposes a user-friendly interface and a complete online manual. It allows the inspection of results by the operator and includes proper tools for manual corrections. The user can in fact correct any details on the acquired results by a mouse click. Time saving is significant and errors due to loss of concentration are avoided. RESULTS: The software was tested over 16 randomly chosen images from 2 different experiments. The results show that the proposed automatic method produces results that are close to the ground truth. CONCLUSIONS: The proposed approaches demonstrated a very high level of robustness. The adoption of the proposed software package will save many hours of labor to the bench scientist. The software needs no particular configuration and is freely available for download on: http://w3.ualg.pt/∼hshah/eggcounter/.


Asunto(s)
Anopheles/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Oviposición/fisiología , Óvulo/fisiología , Programas Informáticos , Animales , Femenino
5.
PLoS One ; 6(9): e24166, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931659

RESUMEN

Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1/FF390. This in silico analysis of the specificity of FR1/FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1/FF390 for Fungi was validated in vitro by cloning--sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils.


Asunto(s)
Cartilla de ADN/genética , Hongos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Rizosfera , Biodiversidad , ADN de Hongos/química , ADN de Hongos/genética , Hongos/clasificación , Hongos/crecimiento & desarrollo , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Filogenia , Raíces de Plantas/microbiología , ARN Ribosómico 18S/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Suelo/análisis , Especificidad de la Especie
6.
PLoS One ; 6(4): e18169, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21483744

RESUMEN

BACKGROUND: The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA) V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs) per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. CONCLUSIONS/SIGNIFICANCE: In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes.


Asunto(s)
Biodiversidad , Eucariontes/clasificación , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Sedimentos Geológicos , Océanos y Mares , ARN Ribosómico 18S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...