Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1340275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605706

RESUMEN

Papaya leaf curl disease (PaLCuD) is widespread and classified in the genus begomovirus (Geminiviridae), disseminated by the vector whitefly Bemisia tabaci. RNA interference (RNAi)-based antiviral innate immunity stands as a pivotal defense mechanism and biological process in limiting viral genomes to manage plant diseases. The current study aims to identify and analyze Carica Papaya locus-derived capa-microRNAs with predicted potential for targeting divergent begomovirus species-encoded mRNAs using a 'four integrative in silico algorithms' approach. This research aims to experimentally activate the RNAi catalytic pathway using in silico-predicted endogenous capa-miRNAs and create papaya varieties capable of assessing potential resistance against begomovirus species and monitoring antiviral capabilities. This study identified 48 predicted papaya locus-derived candidates from 23 miRNA families, which were further investigated for targeting begomovirus genes. Premised all the four algorithms combined, capa-miR5021 was the most anticipated miRNA followed by capa-miR482, capa-miR5658, capa-miR530b, capa-miR3441.2, and capa-miR414 'effective' papaya locus-derived candidate capa-miRNA and respected putative binding sites for targets at the consensus nucleotide position. It was predicted to bind and target mostly to AC1 gene of the complementary strand and the AV1 gene of the virion strand of different begomovirus isolates, which were associated with replication-associated protein and encapsidation, respectively, during PaLCuD. These miRNAs were also found targeting betaC1 gene of betasatellite which were associated with retardation in leaf growth and developmental abnormalities with severe symptoms during begomovirus infection. To validate target prediction accuracy, we created an integrated Circos plot for comprehensive visualization of host-virus interaction. In silico-predicted papaya genome-wide miRNA-mediated begomovirus target gene regulatory network corroborated interactions that permit in vivo analysis, which could provide biological material and valuable evidence, leading to the development of begomovirus-resistant papaya plants. The integrative nature of our research positions it at the forefront of efforts to ensure the sustainable cultivation of papaya, particularly in the face of evolving pathogenic threats. As we move forward, the knowledge gained from this study provides a solid foundation for continued exploration and innovation in the field of papaya virology, and to the best of our knowledge, this study represents a groundbreaking endeavor, undertaken for the first time in the context of PaLCuD research.

2.
Front Plant Sci ; 15: 1321950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292912

RESUMEN

Introduction: Invasive species have been identified as a major threat to native biodiversity and ecosystem functioning worldwide due to their superiority in spread and growth. Such superiority is explained by the invasional meltdown phenomena, which suggests that invasive species facilitate the establishment of more invasive species rather than native species by modifying the plant-soil feedback (PSF). Methods: We conducted a two-phase plant-soil feedback experiment using the native Prosopis cineraria and the invasive Prosopis juliflora in Oman. Firstly, we conditioned the soil by planting seedlings of native species, invasive species, native and invasive species "mixed", and unconditioned soil served as a control. Secondly, we tested the feedback of these four conditioned soil on the two species separately by measuring the productivity (total biomass) and the performance in the form of plant functional traits (plant height, specific leaf area (SLA), leaf nitrogen content (Nmass), leaf carbon content (Cmass) and specific root length (SRL) of native and invasive species as well as the nutrient availability in soil (soil organic carbon (SOC) and soil total nitrogen (STN)). Results and discussion: We found that the native species produced more biomass, best performance, and higher SOC and STN when grown in soil conditioned by native species, additionally, it gave lower biomass, reduced performance, and lower SOC and STN when grown in the soil conditioned by invasive and mixed species. These results suggest negative PSF for native species and positive PSF for invasive species in the soil conditioned by invasive species, which can be considered as red flag concerning the restoration of P. cineraria as an important native species in Oman, as such positive PSF of the invasive species P. juliflora will inhibit the regeneration of P. cineraria.

3.
Front Microbiol ; 14: 1149004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111636

RESUMEN

Soil salinity is one of the major limiting factors in plant growth regulation. Salinity-tolerant endophytic bacteria (STEB) can be used to alleviate the negative effects of salinity and promote plant growth. In this study, thirteen endophytic bacteria were isolated from mungbean roots and tested for NaCl salt-tolerance up to 4%. Six bacterial isolates, TMB2, TMB3, TMB5, TMB6, TMB7 and TMB9, demonstrated the ability to tolerate salt. Plant growth-promoting properties such as phosphate solubilization, indole-3-acetic acid (IAA) production, nitrogen fixation, zinc solubilization, biofilm formation and hydrolytic enzyme production were tested in vitro under saline conditions. Eight bacterial isolates indicated phosphate solubilization potential ranging from 5.8-17.7 µg mL-1, wherein TMB6 was found most efficient. Ten bacterial isolates exhibited IAA production ranging from 0.3-2.1 µg mL-1, where TMB7 indicated the highest potential. All the bacterial isolates except TMB13 exhibited nitrogenase activity. Three isolates, TMB6, TMB7 and TMB9, were able to solubilize zinc on tris-minimal media. All isolates were capable of forming biofilm except TMB12 and TMB13. Only TMB2, TMB6 and TMB7 exhibited cellulase activity, while TMB2 and TMB7 exhibited pectinase production. Based on in vitro testing, six efficient STEB were selected and subjected to the further studies. 16S rRNA gene sequencing of efficient STEB revealed the maximum similarity between TMB2 and Rhizobium pusense, TMB3 and Agrobacterium leguminum, TMB5 and Achromobacter denitrificans, TMB6 and Pseudomonas extremorientalis, TMB7 and Bradyrhizobium japonicum and TMB9 and Serratia quinivorans. This is the first international report on the existence of A. leguminum, A. denitrificans, P. extremorientalis and S. quinivorans inside the roots of mungbean. Under controlled-conditions, inoculation of P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans TMB9 exhibited maximum potential to increase plant growth parameters; specifically plant dry weight was increased by up to 52%, 61% and 45%, respectively. Inoculation of B. japonicum TMB7 displayed the highest potential to increase plant proline, glycine betaine and total soluble proteins contents by 77%, 78% and 64%, respectively, compared to control under saline conditions. It is suggested that the efficient STEB could be used as biofertilizers for mungbean crop productivity under saline conditions after field-testing.

4.
Viruses ; 15(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140622

RESUMEN

Alternanthera yellow vein virus (AlYVV), a monopartite begomovirus, has been identified infecting a diverse range of crops and native plants in Pakistan, India, and China. However, distinctive yellow vein symptoms, characteristic of begomovirus infection, were observed on the Ageratum conyzoides weed in Oman, prompting a thorough genomic characterization in this study. The results unveiled a complete genome sequence of 2745 base pairs and an associated betasatellite spanning 1345 base pairs. In addition, Sequence Demarcation Tool analyses indicated the highest nucleotide identity of 92.8% with a previously reported AlYVV-[IN_abalpur_A_17:LC316182] strain, whereas the betasatellite exhibited a 99.8% nucleotide identity with isolates of tomato leaf curl betasatellite. Thus, our findings propose a novel AlYVV Oman virus (AlYVV-OM) variant, emphasizing the need for additional epidemiological surveillance to understand its prevalence and significance in Oman and the broader region. To effectively manage the spread of AlYVV-OM and minimize its potential harm to (agro)ecosystems, future research should focus on elucidating the genetic diversity of AlYVV-OM and its interactions with other begomoviruses.


Asunto(s)
Ageratum , Begomovirus , Begomovirus/genética , Omán , Ecosistema , Análisis de Secuencia de ADN , Enfermedades de las Plantas , Filogenia , ADN Viral/genética , Nucleótidos
6.
Discov Nano ; 18(1): 74, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37382723

RESUMEN

Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.

7.
Plants (Basel) ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176969

RESUMEN

Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.

8.
Front Plant Sci ; 14: 1164921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063229

RESUMEN

Tomato yellow leaf curl virus (TYLCV) is a global spreading begomovirus that is exerting a major restraint on global tomato production. In this transgenic approach, an RNA interference (RNAi)-based construct consisting of sequences of an artificial microRNA (amiRNA), a group of small RNA molecules necessary for plant cell development, signal transduction, and stimulus to biotic and abiotic disease was engineered targeting the AC1/Rep gene of the Oman strain of TYLCV-OM. The Rep-amiRNA constructs presented an effective approach in regulating the expression of the Rep gene against TYLCV as a silencing target to create transgenic Solanum lycopersicum L. plant tolerance against TYLCV infection. Molecular diagnosis by PCR followed by a Southern hybridization analysis were performed to confirm the effectiveness of agrobacterium-mediated transformation in T0/T1-transformed plants. A substantial decrease in virus replication was observed when T1 transgenic tomato plants were challenged with the TYLCV-OM infectious construct. Although natural resistance options against TYLCV infection are not accessible, the current study proposes that genetically transformed tomato plants expressing amiRNA could be a potential approach for engineering tolerance in plants against TYLCV infection and conceivably for the inhibition of viral diseases against different strains of whitefly-transmitted begomoviruses in Oman.

9.
Insects ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975953

RESUMEN

Irrigated agriculture and global trade expansion have facilitated diversification and spread of begomoviruses (Geminiviridae), transmitted by the Bemisia tabaci (Gennadius) cryptic species. Oman is situated on major crossroads between Africa and South Asia, where endemic/native and introduced/exotic begomoviruses occur in agroecosystems. The B. tabaci 'B mitotype' belongs to the North Africa-Middle East (NAFME) cryptic species, comprising at least eight endemic haplotypes, of which haplotypes 6 and/or 8 are recognized invasives. Prevalence and associations among native and exotic begomoviruses and NAFME haplotypes in Oman were investigated. Nine begomoviral species were identified from B. tabaci infesting crop or wild plant species, with 67% and 33% representing native and exotic species, respectively. Haplotypes 2, 3, and 5 represented 31%, 3%, and 66% of the B. tabaci population, respectively. Logistic regression and correspondence analyses predicted 'strong'- and 'close' virus-vector associations involving haplotypes 5 and 2 and the exotic chili leaf curl virus (ChiLCV) and endemic tomato yellow leaf curl virus-OM, respectively. Patterns favor a hypothesis of relaxed virus-vector specificity between an endemic haplotype and the introduced ChiLCV, whereas the endemic co-evolved TYLCV-OM and haplotype 2 virus-vector relationship was reinforced. Thus, in Oman, at least one native haplotype can facilitate the spread of endemic and introduced begomoviruses.

10.
Crit Rev Food Sci Nutr ; 63(16): 2672-2686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34554039

RESUMEN

Soil contamination with toxic heavy metals (HMs) poses a serious threat to global food safety, soil ecosystem and human health. The rapid industrialization, urbanization and extensive application of agrochemicals on arable land have led to paddy soil pollution worldwide. Rice plants easily accumulate toxic HMs from contaminated agricultural soils, which ultimately accumulated in grains and enters the food chain. Although, physical and chemical remediation techniques have been used for the treatment of HMs-contaminated soils, however, they also have many drawbacks, such as toxicity, capital investment and environmental-associated hazards. Recently, engineered nanomaterials (ENMs) have gained substantial attention owing to their promising environmental remediation applications. Numerous studies have revealed the use of ENMs for reclamation of toxic HMs from contaminated environment. This review mainly focuses on HMs toxicity in paddy soils along with potential health risks to humans. It also provides a critical outlook on the recent advances and future perspectives of nanoremediation strategies. Additionally, we will also propose the interacting mechanism of HMs-ENMs to counteract metal-associated phytotoxicities in rice plants to achieve global food security and environmental safety.


Asunto(s)
Metales Pesados , Nanoestructuras , Oryza , Contaminantes del Suelo , Humanos , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Inocuidad de los Alimentos , Suelo , Nanoestructuras/toxicidad
11.
Plants (Basel) ; 11(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365347

RESUMEN

Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 µg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight.

12.
Plants (Basel) ; 11(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235474

RESUMEN

Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe rice disease. In order to effectively utilize Pantoea in rice production, this paper analyzed the mechanisms underlying beneficial and harmful effects of Pantoea on rice growth. The beneficial effect of Pantoea on rice plants includes growth promotion, abiotic alleviation and disease inhibition. The growth promotion may be mainly attributed to nitrogen-fixation, phosphate solubilization, plant physiological change, the biosynthesis of siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylic acid deaminase and phytohormones, including cytokinin, indole-3-acetic acid (IAA), auxins, abscisic acid and gibberellic acid, while the disease inhibition may be mainly due to the induced resistance, nutrient and spatial competition, as well as the production of a variety of antibiotics. The pathogenic mechanism of Pantoea can be mainly attributed to bacterial motility, production of phytohormones such as IAA, quorum sensing-related signal molecules and a series of cell wall-degrading enzymes, while the pathogenicity-related genes of Pantoea include genes encoding plasmids, such as the pPATH plasmid, the hypersensitive response and pathogenicity system, as well as various types of secretion systems, such as T3SS and T6SS. In addition, the existing scientific problems in this field were discussed and future research prospects were proposed.

13.
Environ Pollut ; 315: 120391, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223852

RESUMEN

Increasing chromium (Cr) contamination in agricultural soils is a threat to crop yields and quality. Recently, nano-enabled strategies have been emerging with a great potential towards improving crop production and reclaiming the heavy metal contaminated soils. This study aimed to elucidate the potential of silicon oxide nanoparticles (SiONPs) on optimizing wheat growth and yield against Cr stress-induced phytotoxicity. Spherical crystalline SiONPs with the diameter in the range of 15-24 nm were applied at a dose of 250 mg kg-1 soil for pot experiments planted with wheat seedlings, with or without Cr contaminations. The pot experiment results showed that SiONPs amendments significantly improved the plant length (26.8%), fresh (28.5%) and dry weight (30.4%) as compared with the control treatment. In addition, SiONPs also enhanced photosynthetic activity, antioxidant enzyme contents (CAT, APX, SOD and POD content) and reduced the reactive oxygen species (ROS) in wheat plants under Cr stress condition. The alleviation of Cr toxicity was deemed to be associated with the reduced Cr uptake into the roots (-39.6%) and shoots (-35.7%). The ultrastructural analyses revealed that the application of SiONPs in Cr contaminated soils maintained the normal cellular structure of the wheat plant, as compared with those of controls without SiONPs. These results provide the first evidence showing the great potential of SiONPs application towards alleviating the Cr stress for optimized wheat growth and yield in Cr contaminated soils.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Cromo/toxicidad , Cromo/análisis , Triticum , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Antioxidantes/farmacología , Suelo/química , Nanopartículas/toxicidad , Óxidos
14.
Viruses ; 14(8)2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-36016392

RESUMEN

Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.


Asunto(s)
Bacteriófagos , Oryza , Xanthomonas , Proteínas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Virulencia/genética , Xanthomonas/genética
15.
Front Plant Sci ; 13: 951752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898211

RESUMEN

Abiotic stresses, such as heavy metals (HMs), drought, salinity and water logging, are the foremost limiting factors that adversely affect the plant growth and crop productivity worldwide. The plants respond to such stresses by activating a series of intricate mechanisms that subsequently alter the morpho-physiological and biochemical processes. Over the past few decades, abiotic stresses in plants have been managed through marker-assisted breeding, conventional breeding, and genetic engineering approaches. With technological advancement, efficient strategies are required to cope with the harmful effects of abiotic environmental constraints to develop sustainable agriculture systems of crop production. Recently, nanotechnology has emerged as an attractive area of study with potential applications in the agricultural science, including mitigating the impacts of climate change, increasing nutrient utilization efficiency and abiotic stress management. Nanoparticles (NPs), as nanofertilizers, have gained significant attention due to their high surface area to volume ratio, eco-friendly nature, low cost, unique physicochemical properties, and improved plant productivity. Several studies have revealed the potential role of NPs in abiotic stress management. This review aims to emphasize the role of NPs in managing abiotic stresses and growth promotion to develop a cost-effective and environment friendly strategy for the future agricultural sustainability.

16.
Front Microbiol ; 13: 879413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685936

RESUMEN

The genus Begomovirus represents a group of multipartite viruses that significantly damage many agricultural crops, including papaya, and influence overall production. Papaya leaf curl disease (PaLCD) caused by the complex begomovirus species has several important implications and substantial losses in papaya production in many developing countries, including India. The increase in the number of begomovirus species poses a continuous threat to the overall production of papaya. Here, we attempted to map the genomic variation, mutation, evolution rate, and recombination to know the disease complexity and successful adaptation of PaLCD in India. For this, we retrieved 44 DNA-A and 26 betasatellite sequences from GenBank reported from India. An uneven distribution of evolutionary divergence has been observed using the maximum-likelihood algorithm across the branch length. Although there were phylogenetic differences, we found high rates of nucleotide substitution mutation in both viral and sub-viral genome datasets. We demonstrated frequent recombination of begomovirus species, with a maximum in intra-species recombinants. Furthermore, our results showed a high degree of genetic variability, demographic selection, and mean substitution rate acting on the population, supporting the emergence of a diverse and purifying selection of viruses and associated betasatellites. Moreover, variation in the genetic composition of all begomovirus datasets revealed a predominance of nucleotide diversity principally driven by mutation, which might further accelerate the advent of new strains and species and their adaption to various hosts with unique pathogenicity. Therefore, the finding of genetic variation and selection emphases on factors that contribute to the universal spread and evolution of Begomovirus and this unanticipated diversity may also provide guidelines toward future evolutionary trend analyses and the development of wide-ranging disease control strategies for begomoviruses associated with PaLCD.

17.
Arch Virol ; 166(7): 2033-2036, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33900467

RESUMEN

The complete nucleotide sequences of a monopartite begomovirus and an associated alphasatellite and betasatellite isolated from naturally infected okra (Abelmoschus esculentus) plants originating from Jordan were determined. The sequences of the begomovirus, alphasatellite, and betasatellites were determined to be 2,764, 1,307, and 1,354 nucleotides in length, respectively. Sequence Demarcation Tool (SDT) and phylogenetic analysis revealed that the begomovirus isolate shared the highest (99.5-99.8%) nt sequence identity with isolates of cotton leaf curl Gezira virus (CLCuGeV), a begomovirus found to exclusively infect cotton in Africa, and recently, in Asia and the Middle East. The DNA sequences of the alphasatellite and betasatellite exhibited the highest nt sequence identity (98.7-98.9% and 92.2-95.3%, respectively) to cotton leaf curl Gezira alphasatellite and cotton leaf curl Gezira betasatellite, respectively. This is the first identification of an African begomovirus, associated with DNA satellites, infecting okra in Jordan.


Asunto(s)
Abelmoschus/virología , Begomovirus/genética , ADN Satélite/genética , África , Asia , Secuencia de Bases , ADN Viral/genética , Jordania , Filogenia , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN/métodos
18.
Physiol Mol Biol Plants ; 27(1): 11-27, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33627959

RESUMEN

Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00925-3.

19.
Front Microbiol ; 11: 609376, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584572

RESUMEN

In recent years, next-generation sequencing (NGS) and contemporary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) technologies have revolutionized the life sciences and the field of plant virology. Both these technologies offer an unparalleled platform for sequencing and deciphering viral metagenomes promptly. Over the past two decades, NGS technologies have improved enormously and have impacted plant virology. NGS has enabled the detection of plant viruses that were previously undetectable by conventional approaches, such as quarantine and archeological plant samples, and has helped to track the evolutionary footprints of viral pathogens. The CRISPR-Cas-based genome editing (GE) and detection techniques have enabled the development of effective approaches to virus resistance. Different versions of CRISPR-Cas have been employed to successfully confer resistance against diverse plant viruses by directly targeting the virus genome or indirectly editing certain host susceptibility factors. Applications of CRISPR-Cas systems include targeted insertion and/or deletion, site-directed mutagenesis, induction/expression/repression of the gene(s), epigenome re-modeling, and SNPs detection. The CRISPR-Cas toolbox has been equipped with precision GE tools to engineer the target genome with and without double-stranded (ds) breaks or donor templates. This technique has also enabled the generation of transgene-free genetically engineered plants, DNA repair, base substitution, prime editing, detection of small molecules, and biosensing in plant virology. This review discusses the utilities, advantages, applications, bottlenecks of NGS, and CRISPR-Cas in plant virology.

20.
Virol J ; 16(1): 131, 2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31706358

RESUMEN

BACKGROUND: In Oman tobacco (Nicotiana tabacum; family Solanaceae) is a minor crop, which is produced only for local consumption. In 2015, tobacco plants exhibiting severe downward leaf curling, leaf thickening, vein swelling, yellowing and stunting were identified in fields of tobacco in Suhar Al-Batina region, Oman. These symptoms are suggestive of begomovirus (genus Begomovirus, family Geminiviridae) infection. METHODS: Circular DNA molecules were amplified from total DNA extracted from tobacco plants by rolling circle amplification (RCA). Viral genomes were cloned from RCA products by restriction digestion and betasatellites were cloned by PCR amplification from RCA product, using universal primers. The sequences of full-length clones were obtained by Sanger sequencing and primer walking. Constructs for the infectivity of virus and betasatellite were produced and introduced into plants by Agrobacterium-mediated inoculation. RESULTS: The full-length sequences of 3 begomovirus and 3 betasatellite clones, isolated from 3 plants, were obtained. Analysis of the full-length sequences determined showed the virus to be a variant of Chilli leaf curl virus (ChiLCV) and the betasatellite to be a variant of Tomato leaf curl betasatellite (ToLCB). Both the virus and the betasatellite isolated from tobacco show the greatest levels of sequence identity to isolates of ChiLCV and ToLCB identified in other hosts in Oman. Additionally clones of ChiLCV and ToLCB were shown, by Agrobacterium-mediated inoculation, to be infectious to 3 Nicotiana species, including N. tabacum. In N. benthamiana the betasatellite was shown to change the upward leaf rolling symptoms to a severe downward leaf curl, as is typical for many monopartite begomoviruses with betasatellites. CONCLUSIONS: The leaf curl disease of tobacco in Oman was shown to be caused by ChiLCV and ToLCB. This is the first identification of ChiLCV with ToLCB infecting tobacco. The study shows that, despite the low diversity of begomoviruses and betasatellites in Oman, the extant viruses/betasatellites are able to fill the niches that present themselves.


Asunto(s)
Begomovirus/aislamiento & purificación , Capsicum/virología , Nicotiana/virología , Enfermedades de las Plantas/virología , Virus Satélites/aislamiento & purificación , Solanum lycopersicum/virología , Begomovirus/clasificación , Begomovirus/genética , Begomovirus/patogenicidad , ADN Viral/genética , Genoma Viral/genética , Omán , Filogenia , Hojas de la Planta/virología , Virus Satélites/clasificación , Virus Satélites/genética , Virus Satélites/patogenicidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...