Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 351: 141257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244871

RESUMEN

Airborne polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of particular concern for population health due to their abundance and toxicity via inhalation. Lung toxicity testing includes exposing lung epithelial cell lines to PAHs in a culture medium containing inorganic species, lipids, proteins, and other biochemicals where the cell response is influenced among others by the toxic chemical accessibility in the medium. While inhalation bioaccessibility of PAHs and other toxicants was previously studied in surrogate lung fluids, studies measuring bioaccessibility in cell culture media are rare. In this work, a method was developed to characterize PAH bioaccessibility in a culture medium used for mouse lung epithelial (FE1) cells. Further, the optimised method was tested using commercially available standard reference material of urban particulate matter (PM) as well as polyurethane foam passive air samplers (PUF-PAS). The method provided a high precision and recovery of analytes, indicating no losses during sample processing and analysis. PAHs had non-linear concentration-responses, with the culture medium approaching saturation with PM concentration of 500 µg mL-1. The results showed that phenanthrene, a 3-ring PAH, was significantly more bioaccessible than ≥4-ring congeners in the culture medium (up to ∼2.5 folds; p < 0.05). Finally, using pre-deployed PUF-PAS from a residential and an industrial site, five PAHs were found in the culture medium, including naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene. This work provides a proof of concept to enable future studies to assess the inhalation bioaccessibility of polycyclic aromatic compounds and other airborne pollutants collected using PUF-PAS.


Asunto(s)
Contaminantes Atmosféricos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Animales , Ratones , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Fenantrenos/análisis , Compuestos Policíclicos/análisis , Técnicas de Cultivo de Célula , Monitoreo del Ambiente/métodos
2.
Environ Sci Technol ; 57(35): 13114-13123, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607349

RESUMEN

Current understanding of atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) is limited in alpine areas due to complex meteorology and topography. To better understand atmospheric transport in these areas, we measured 16 PAHs in lichens, biomonitors of atmospheric PAHs, along three transects extending from a highway into otherwise remote alpine valleys. While the valleys neighbored one another and were morphologically similar, they differed in their orientation relative to regional winds. In the valley characterized by regional winds oriented up-valley, PAH concentrations in lichens remained consistent across the transect. In the other two valleys, where regional winds were oriented down or across the valley, 3-6 ring PAHs declined rapidly with increasing distance from the highway, and PAH concentrations in the lichens declined more rapidly for higher molecular weight PAHs than lower molecular weight PAHs. We hypothesize that this trend was driven by differences in gas-particle partitioning and vegetative scavenging between PAH congeners. These results illustrate the importance of both physical transport and chemical partitioning in alpine areas where small differences in topography can lead to significant differences in chemical transport.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Viento , Ambiente , Meteorología , Peso Molecular
3.
Environ Sci Pollut Res Int ; 30(6): 16749-16755, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36550248

RESUMEN

Redox-active substances in fine particulate matter (PM) contribute to inhalation health risks through their potential to generate reactive oxygen species in epithelial lung lining fluid (ELF). The ELF's air-liquid interface (ALI) can play an important role in the phase transfer and multi-phase reactions of redox-active PM constituents. We investigated the influence of interfacial processes and properties by scrubbing of coated nano-particles with simulated ELF in a nebulizing mist chamber. Weakly water-soluble redox-active organics abundant in ambient fine PM were reproducibly loaded into ELF via ALI mixing. The resulting oxidative potential (OP) of selected quinones and other PAH derivatives were found to exceed the OP resulting from bulk mixing of the same amounts of redox-active substances and ELF. Our results indicate that the OP of PM components depends not only on the PM substance properties but also on the ELF interface properties and uptake mechanisms. OP measurements based on bulk mixing of phases may not represent the effective OP in the human lung.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Especies Reactivas de Oxígeno , Oxidación-Reducción , Estrés Oxidativo
4.
Chemosphere ; 299: 134323, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35302004

RESUMEN

Carbonaceous aerosol species, such as elemental carbon (EC), are important Short-Lived Climate Forcers (SLCFs), contributing to climate and health effects of air pollution. The quantification of carbonaceous aerosols has been conventionally carried out using active air sampling followed by various analytical techniques, such as thermal/thermal-optical analysis. Active sampling requires specific equipment and infrastructure with electricity and therefore may not be the best choice for studying carbonaceous aerosols at remote locations. Passive sampling on the other hand provides a simple and cost-effective alternative to study time-weighted temporal and spatial trends. For the first time in this study, we have developed a method to examine the viability of measuring EC using polyurethane foam passive air samplers (PUF-PAS) coupled with a thermal analysis, i.e., EnCan-Total-900 (ECT9). The method was found reproducible with coefficients of variation as low as 3% for EC measured in ambient passive samples. The method had relatively low background with EC levels in blanks being as low as 0.1% of those in deployed samples, allowing quantification within a wide range of concentrations. The results indicate a homogenous distribution of particles within the PUF-PAS substrate. EC concentrations measured with the passive method were not significantly different from those obtained from active samples at the study sites (p > 0.01). This proof of concept of the PUF-PAS method provides an opportunity to cost-effectively expand measurements of elemental carbon at the global scale, and could be further extended to include other carbonaceous aerosol species in the future. This helps address regional data gaps for improving uncertainties of SLCF impacts on global climate forcing and to inform policy decisions.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Poliuretanos/química
5.
Environ Int ; 148: 106343, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33454608

RESUMEN

Air pollution is a major environmental health risk and it contributes to respiratory and cardiovascular diseases and excess mortality worldwide. The adverse health effects have been associated with the inhalation of fine particulate matter (PM2.5) and induction of respiratory oxidative stress. In this work, we quantified the oxidative potential (OP) of PM2.5 from several Canadian cities (Toronto, Hamilton, Montreal, Vancouver) using a recently developed bioanalytical method which measures the oxidation of lung antioxidants, glutathione, cysteine, and ascorbic acid, the formation of glutathione disulfide and cystine, and the related redox potential (RP) in a simulated epithelial lining fluid (SELF). We evaluated the application of empirical SELF RP as a new metric for aerosol OP. We further investigated how PM2.5 chemical composition and OP are related across various emission source sectors and whether these features are linked to specific properties of aerosol aqueous phase, such as pH and metal-ligand complexation. The OP indicators including SELF RP were strongly correlated among each other, indicating that the empirical RP could be used as a reliable metric in future studies. OP based on ascorbic acid showed dependency on the emission source sectors, most likely due to variation in the solubility of Fe. Traffic emissions resulted in the highest OP, followed by industrial emissions and resuspended crustal matter. OP presented low correlation with PM2.5 concentrations, low-moderate correlation with the aerosol organic matter, and moderate-strong association with black carbon and transition metals across the sites. We did not find strong association between the concentration of biomass burning tracers and OP. Copper was the only metal that showed high association with OP across all sites, whereas the correlation with other metals, such as iron, manganese, and titanium, showed clear dependency on the source sectors. The aerosol pH correlated negatively with ambient temperature and positively with biomass burning tracers and the levels of nitrate, ammonium, and aerosol liquid water content. The solubility of Fe was associated with sulfate and aerosol pH at most sites, suggesting the involvement of proton-mediated dissolution pathway, while this was not visible at the site influenced by industrial emission, most likely due to the abundance of pyrogenic Fe. The effect of metal-ligand complexation on the solubility of transition metals, in particular Fe, was clearly observed at all sites, whereas a combined effect with aerosol pH, and a subsequent impact on OP, was only seen at the traffic site in Toronto. The enhanced solubility of Fe due to proton- and ligand-mediated dissolution pathways and subsequent formation of reactive oxygen species may in part explain the health effects of PM2.5 seen in previous epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Canadá , Ciudades , Monitoreo del Ambiente , Pulmón/química , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/análisis , Solubilidad
6.
Environ Sci Pollut Res Int ; 28(42): 59131-59140, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32529617

RESUMEN

Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (Σ12NMAH) measured in winter PM10 samples from Ostrava and Kladno were 102 and 93 ng m-3, respectively, and 8.8 ng m-3 in summer PM10 samples from Ostrava. The concentrations in winter corresponded to 6.3-7.3% and 2.6-3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67-93%, 61-73% and 28-96% of NMAHs in PM10 samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM1), often in the PM0.5 size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM3 samples in two simulated lung fluids, Gamble's solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble's solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log KOW > 4.5).


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Catecoles , Monitoreo del Ambiente , Humanos , Nitratos , Nitrocompuestos , Nitrofenoles , Material Particulado/análisis , Tolueno
7.
Environ Sci Technol ; 54(5): 2615-2625, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950831

RESUMEN

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Monitoreo del Ambiente , Europa (Continente) , Humanos , Nitratos , Material Particulado
8.
Environ Sci Technol ; 50(22): 12312-12319, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27734681

RESUMEN

A model for gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) was evaluated using polyparameter linear free energy relationships (ppLFERs) following a multiphase aerosol scenario. The model differentiates between various organic (i.e., liquid water-soluble (WS)/organic soluble (OS) organic matter (OM), and solid/semisolid organic polymers) and inorganic phases of the particulate matter (PM). Dimethyl sulfoxide and polyurethane were assigned as surrogates to simulate absorption into the above-mentioned organic phases, respectively, whereas soot, ammonium sulfate, and ammonium chloride simulated adsorption processes onto PM. The model was tested for gas and PM samples collected from urban and nonurban sites in Europe and the Mediterranean, and the output was compared with those calculated using single-parameter linear free energy relationship (spLFER) models, namely Junge-Pankow, Finizio, and Dachs-Eisenreich. The ppLFER model on average predicted 96 ± 3% of the observed partitioning constants for semivolatile PAHs, fluoranthene, and pyrene, within 1 order of magnitude accuracy with root-mean-square errors (RMSE) of 0.35-0.59 across the sites. This was a substantial improvement compared to Finizio and Dachs-Eisenreich models (37 ± 17 and 46 ± 18% and RMSE of 1.03-1.40 and 0.94-1.36, respectively). The Junge-Pankow model performed better among spLFERs but at the same time showed an overall tendency for overestimating the partitioning constants. The ppLFER model demonstrated the best overall performance without indicating a substantial intersite variability. The ppLFER analysis with the parametrization applied in this study suggests that the absorption into WSOSOM could dominate the overall partitioning process, while adsorption onto salts could be neglected.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Monitoreo del Ambiente , Gases , Material Particulado
9.
Sci Total Environ ; 565: 1071-1083, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27261422

RESUMEN

21 PAHs, 27 oxy-PAHs and 32 nitro-PAHs were measured every third day over a year in both gaseous (G) and particulate PM10 (P) phases in ambient air of Grenoble (France). Mean total concentrations (G+P) of PAHs and oxy-PAHs were in the same range and about 10ngm(-3). Nitro-PAHs were 50 to 100 times less concentrated averaging 100pgm(-3). Polycyclic aromatic compound (PAC) concentrations were 5 to 7 times higher in "cold" period (October to March) than in "warm" period (April to September). Seasonal variations may be explained by higher primary emissions from residential heating, especially biomass burning in "cold" season. Meteorological conditions and influence of the geomorphology around Grenoble, with the formation of thermal inversion layers leading to the stagnation of pollutants, were additional key parameters. Maximum individual PAC concentrations were observed during two PM10 pollution events in December and February-March. Chemical processes and secondary formation of oxy- and nitro-PAH were probably enhanced by the accumulation of the pollutants during these events. PAC gas/particle partitioning depended on compound molecular weight and vapour pressure. Gas/particle partitioning of oxy- and nitro-PAHs were evaluated using a multi-phase poly-parameter linear free energy relationship model. The PAC cancer risk was assessed using toxic equivalency factors available in the literature (19 PAHs, 10 nitro-PAHs and 1 oxy-PAH). Overall, particle-bound PACs contributed about 76% of the cancer risk. While PAHs accounted for most of the total PAC cancer risk, oxy- and nitro-PAHs could account for up to 24%. The risk quantification across substance classes is limited by toxicological data availability.


Asunto(s)
Contaminantes Atmosféricos/análisis , Gases/análisis , Neoplasias/epidemiología , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ciudades , Monitoreo del Ambiente , Francia/epidemiología , Riesgo , Estaciones del Año
10.
Environ Sci Technol ; 48(19): 11294-301, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25153782

RESUMEN

Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Meteorología , Nueva Zelanda , Lluvia , Nieve
11.
J Chromatogr A ; 1314: 1-6, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24054124

RESUMEN

Silicone rubber passive samplers effectively concentrate organic contaminants from water and are simple-to-use and robust. However, during the extraction of analytes from the samplers with organic solvents, oligomers associated with the rubber are inevitably extracted and this creates analytic challenges. Additionally, extraction methods that use Soxhlet or shaking are time-consuming and use large volumes of solvent. We evaluated a new method for the extraction of polycyclic aromatic hydrocarbons from silicone rubber passive samplers that uses pressurized liquid extraction with gel permeation chromatography. Extraction with dichloromethane at 100°C provided better recoveries compared to that of 50°C. The recoveries of 14 individual PAHs ranged from 81% to 102% and the mean recovery was 93% (standard deviation=7). Relative to comparable methods in which Soxhlet or shaking were used for the extraction, this method uses considerably less solvent and time.


Asunto(s)
Extracción Líquido-Líquido , Compuestos Policíclicos/aislamiento & purificación , Siliconas/química , Cromatografía en Gel , Límite de Detección , Presión , Solventes
12.
Environ Pollut ; 181: 219-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23871819

RESUMEN

To determine if current sheep/beef farming practices affect pesticide residues in streams, current-use and legacy chlorinated pesticides were quantified in 100 sediment samples from 15 streams on the South Island of New Zealand. The study involved five blocks of three neighboring farms, with each block containing farms managed by organic, integrated and conventional farming practices. Significantly higher concentrations of dieldrin, ∑ endosulfans, ∑ current-use pesticides, and ∑ chlorinated pesticides were measured in sediments from conventional farms compared to organic and integrated farms. However, streams in the latter two farming categories were not pesticide-free and sometimes contained relatively high concentrations of legacy pesticides. Comparison of measured pesticide concentrations with sediment quality guidelines showed that, regardless of farming practice, mean pesticide concentrations were below the recommended toxicity thresholds. However, up to 23% of individual samples contained chlorpyrifos, endosulfan sulfate, ∑ DDT, dieldrin, or ∑ chlordane concentrations above these thresholds.


Asunto(s)
Agricultura , Sedimentos Geológicos/química , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Crianza de Animales Domésticos , Animales , Bovinos , Monitoreo del Ambiente , Nueva Zelanda , Agricultura Orgánica , Residuos de Plaguicidas/análisis , Ovinos , Contaminación Química del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...