Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 9(2): e0048421, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34549998

RESUMEN

Akkermansia muciniphila, as a member of the gut microbiota, has been proposed as a next-generation probiotic. Liver fibrosis is the main determinant of liver dysfunction and mortality in patients with chronic liver disease. In this study, we aimed to determine the beneficial effects of live and pasteurized A. muciniphila and its extracellular vesicles (EVs) on the prevention of liver fibrosis. The response of hepatic stellate cells (HSCs) to live and pasteurized A. muciniphila and its EVs was examined in quiescent, lipopolysaccharide (LPS)-activated LX-2 cells. Liver fibrosis was induced in 8-week-old C57BL/6 mice, using a high-fat diet (HFD) and carbon tetrachloride (CCl4) administration for 4 weeks. The mice were concomitantly treated via oral gavage with three forms of bacteria. The relative expression of different fibrosis and inflammatory markers was assessed in the tissues. Histological markers, serum biochemical parameters, and cytokine production were also analyzed, and their correlations with the relative abundance of targeted fecal bacteria were examined. All A. muciniphila preparations exhibited protective effects against HSC activation; however, EVs showed the greatest activity in HSC regression. Oral gavage with A. muciniphila ameliorated the serum biochemical and inflammatory cytokines and improved liver and colon histopathological damages. The relative expression of fibrosis and inflammatory biomarkers was substantially attenuated in the tissues of all treated mice. The composition of targeted stool bacteria in the live A. muciniphila group was clearly different from that in the fibrosis group. This study indicated that A. muciniphila and its derivatives could successfully protect against HFD/CCl4-induced liver injury. However, further studies are needed to prove the beneficial effects of A. muciniphila on the liver. IMPORTANCE Akkermansia muciniphila, as a member of the gut microbiota, has been proposed as a next-generation probiotic. Liver fibrosis is the main determinant of liver dysfunction and mortality in patients with chronic liver disease. In this study, we aimed to determine the beneficial effects of live and pasteurized A. muciniphila and its extracellular vesicles (EVs) on the prevention of liver fibrosis. The results of the present study indicated that oral administration of live and pasteurized A. muciniphila and its EVs could normalize the fecal targeted bacteria composition, improve the intestinal permeability, modulate inflammatory responses, and subsequently prevent liver injury in HFD/CCl4-administered mice. Following the improvement of intestinal and liver histopathology, HFD/CCl4-induced kidney damage and adipose tissue inflammation were also ameliorated by different A. muciniphila treatments.


Asunto(s)
Cirrosis Hepática/prevención & control , Probióticos/administración & dosificación , Sustancias Protectoras/administración & dosificación , Akkermansia/química , Akkermansia/fisiología , Animales , Tetracloruro de Carbono/efectos adversos , Dieta Alta en Grasa , Vesículas Extracelulares/química , Heces/microbiología , Células Estrelladas Hepáticas , Humanos , Hígado/efectos de los fármacos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos/química , Sustancias Protectoras/química
2.
Front Microbiol ; 10: 2155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632356

RESUMEN

Recent evidence suggests that probiotics can restore the mucosal barrier integrity, ameliorate inflammation, and promote homeostasis required for metabolism in obesity by affecting the gut microbiota composition. In this study, we investigated the effect of Akkermansia muciniphila and its extracellular vesicles (EVs) on obesity-related genes in microarray datasets and evaluated the cell line and C57BL/6 mice by conducting RT-PCR and ELISA assays. A. muciniphila-derived EVs caused a more significant loss in body and fat weight of high-fat diet (HFD)-fed mice, compared with the bacterium itself. Moreover, treatment with A. muciniphila and EVs had significant effects on lipid metabolism and expression of inflammatory markers in adipose tissues. Both treatments improved the intestinal barrier integrity, inflammation, energy balance, and blood parameters (i.e., lipid profile and glucose level). Our findings showed that A. muciniphila-derived EVs contain various biomolecules, which can have a positive impact on obesity by affecting the involved genes. Also, our results showed that A. muciniphila and its EVs had a significant relationship with intestinal homeostasis, which highlights their positive role in obesity treatment. In conclusion, A. muciniphila-derived EVs can be used as new therapeutic strategies to ameliorate HFD-induced obesity by affecting various mechanisms.

3.
Gastroenterol Hepatol Bed Bench ; 12(2): 163-168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191842

RESUMEN

AIM: We assessed effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction expression in human epithelial colorectal adenocarcinoma cells (Caco-2). BACKGROUND: The intestinal microbiota plays an important role in the intestinal homeostasis through its metabolites and derivatives. Interacting with immune cells and intestinal epithelial pattern recognition receptors (PRRs), intestinal microbiota regulates the function of the digestive barrier and inflammation caused by the metabolic diseases. METHODS: A. muciniphila was cultured on a mucin-containing medium and its EVs was extracted by ultracentrifugation. This bacterium was treated in the MOI=10 and its EVs at the concentrations of 0.1, 0.5 and 5 µg on Caco-2 cells. After 24 hours, the expression of tight junction and toll-like receptor genes were investigated by quantitative real time PCR method. RESULTS: A. muciniphila increased the expression of tlr2 and tlr4. However, EVs at all of the concentrations showed a decrease in tlr4 expression. EVs at the concentrations of 0.1 and 0.5 µg/ml decreased the expression of tlr2. A. muciniphila significantly increased the expression of ocldn and cldn4. Both this bacterium and EVs increased the expression of zo2 in the cell line. Furthermore, this data show that A. muciniphila derived EVs have a dose-independent effect on Caco-2 cells. CONCLUSION: This preliminary research shows A. muciniphila and its EVs both may increase the integrity of the intestinal barrier. A. muciniphila derived EVs also reduces the inflammation so that EVs of this bacterium can be used as an appropriate target for the treatment of metabolic syndrome and inflammatory bowel diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...