Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(9): 645, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930088

RESUMEN

Concurrent adsorptive removal of methylene blue (MB) and rhodamine B (RhB) onto durian rind (DR) agricultural waste, from an aqueous binary solution as a model of wastewater containing multiple synthetic dyes, was investigated. The concurrent adsorption of the dyes followed pseudo-second-order kinetics. The adsorption isotherm was well simulated by the Langmuir model, implying a monolayer adsorption to the surface with a homogeneous binding energy. The adsorption process was governed by external mass transfer through two-step intraparticle diffusion of the dyes onto the adsorbent surface. The adsorption efficiency of MB (96.4%) is much higher than that of RhB (56.3%). This is attributed to the higher rate constant for the adsorption of MB (0.348 g mg-1 min-1) as compared to that of RhB (0.151 g mg-1 min-1). The adsorption behavior suggested that the two cationic dyes in the binary solution diffused and adsorbed independently and randomly onto the DR surface. The adsorption capacity of MB and RhB in the binary solution (47.4 mg g-1 and 32.9 mg g-1, respectively) is lower than those of their single solute solutions (93.3 mg g-1 and 62.8 mg g-1, respectively), suggesting a competitive effect in their concurrent adsorption. This was confirmed based on the adsorption characteristics of the binary solution with different molar ratios. The competitive effect was attributed to either non-interactive or repulsive electrostatic interactions between the positively charged dyes in the binary system. The domination of MB is attributed to its smaller molecular size, higher planarity, and faster adsorption kinetics compared with RhB.


Asunto(s)
Bombacaceae , Contaminantes Químicos del Agua , Adsorción , Colorantes/química , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Rodaminas , Termodinámica , Agua/química , Contaminantes Químicos del Agua/química
2.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268818

RESUMEN

In this study, adsorption characteristics of a negatively charged dye, Acid Blue 25 (AB25), on pomelo pith (PP) was studied by varying the adsorption parameters, with the aim of evaluating the adsorption mechanism and establishing the role of hydrogen bonding interactions of AB25 on agricultural wastes. The kinetics, intraparticle diffusion, mechanism, and thermodynamics of the AB25 adsorption were systematically evaluated and analyzed by pseudo-first-order and pseudo-second-order kinetic models, the Weber-Morris intraparticle and Boyd mass transfer models, the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models, and the Van't Hoff equation. It was found that AB25 adsorption followed pseudo-second-order kinetics, governed by a two-step pore-volume intraparticle diffusion of external mass transfer of AB25 onto the PP surface. The adsorption process occurred spontaneously. The adsorption mechanism could be explained by the Langmuir isotherm model, and the maximum adsorption capacity was estimated to be 26.9 mg g-1, which is comparable to many reported adsorbents derived from agricultural wastes. Changes in the vibrational spectra of the adsorbent before and after dye adsorption suggested that AB25 molecules are bound to the PP surface via electrostatic and hydrogen bonding interactions. The results demonstrated that the use of pomelo pith, similar to other agricultural wastes, would provide a basis to design a simple energy-saving, sustainable, and cost-effective approach to remove negatively charged synthetic dyes from wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...