Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(2): 1367-1376, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174272

RESUMEN

We report a BiFeO3/graphene oxide (BFO/GO) perovskite, synthesized using a CTAB-functionalized glycine combustion route, as a potential material for acetone gas sensing applications. The physicochemical properties of the developed perovskite were analysed using XRD, FE-SEM, TEM, HRTEM, EDAX and XPS. The gas sensing performance was analysed for various test gases, including ethanol, acetone, propanol, ammonia, nitric acid, hydrogen sulphide and trimethylamine at a concentration of 500 ppm. Among the test gases, the developed BFO showed the best selectivity towards acetone, with a response of 61% at an operating temperature of 250 °C. All the GO-loaded BFO samples showed an improved gas sensing performance compared with pristine BFO in terms of sensitivity, the response/recovery times, the transient response curves and the stability. The 1 wt% GO-loaded BiFeO3 sensor showed the highest sensitivity of 89% towards acetone (500 ppm) at an operating temperature of 250 °C. These results show that the developed perovskites have significant potential for use in acetone gas sensing applications.

2.
RSC Adv ; 14(1): 539-547, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173611

RESUMEN

A solid redox mediator (solid electrolyte) with an electrical conductivity (σ25°C) greater than 10-4 S cm-1 is an essential requirement for a dye-sensitized solar cell in the harsh weather of Gulf countries. This paper reports the electrical properties of solid redox mediators prepared using highly dissociable ionic salts: Co[tris-(2,2'-bipyridine)]3(TFSI)2, Co[tris-(2,2'-bipyridine)]3(TFSI)3, and LiCF3SO3 as a source of Co2+, Co3+, and Li+ ions, respectively, in a solid matrix: [(1 - x)succinonitrile:xpoly(ethylene oxide)], where x = 0, 0.5, and 1 in weight fraction. In the presence of large size of cations (Co2+ and Co3+) and large-sized and weakly-coordinated anions (TFSI- and CF3SO3-), only the succinonitrile-poly(ethylene oxide) blend (x = 0.5) resulted in highly conductive amorphous regions with σ25°C of 4.7 × 10-4 S cm-1 for EO/Li+ = 108.4 and 3.1 × 10-4 S cm-1 for EO/Li+ = 216.8. These values are slightly lower than 1.5 × 10-3 S cm-1 for x = 0 and higher than 6.3 × 10-7 S cm-1 for x = 1. Only blend-based electrolytes exhibited a downward curve in the log σ-T-1 plot, a low value of pseudo-activation energy (0.06 eV), a high degree of transparency, and high thermal stability, making it useful for device applications.

3.
ACS Omega ; 8(33): 30508-30518, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37636980

RESUMEN

We report citrate gel-assisted autocombusted spinel-type Co2+-substituted NiCuZn ferrites and their electromagnetic properties. Several complementary techniques were used to investigate the influence of Co on structural and electromagnetic properties of Ni0.25-xCoxCu0.20Zn0.55Fe2O4 with x = 0.00-0.25 (step of 0.05). XRD analysis confirmed the highly crystalline single-phase cubic spinel structure with a prominent peak of the (311) plane. FE-SEM analysis showed the loss of porous gel structure (colloidal backbone) due to addition of cobalt into the present ferrite system. The EDAX analysis confirmed the presence of Ni, Cu, Zn, Co, and O in accordance with the relative stoichiometry of Co-substituted NiCuZn ferrite. The electrical resistivity of ferrites is observed to decrease when Co2+ ions are substituted, regardless of AC and DC. The dielectric properties (ε' and ε″) of ferrites exhibited a consistent decrease as the frequency increased, and this trend persisted even at higher frequencies. VSM analysis showed the normal magnetic hysteresis of the developed ferrite system. At x = 0.05, the saturation magnetization of the ferrite was obtained to be the highest among the other substitution levels of Co. The Curie temperature fell down when there was a higher concentration of cobalt in the ferrite system (x = 0.20). After reaching a specific temperature, the µi values decreased abruptly, with an increase in the temperature. The steady state may be deduced from the fact that the constant real component of the initial permeability, µ', remained unchanged. However, with decreasing frequency, the values of µâ€³ decreased dramatically. The present NiCuZn ferrite series displays the enhanced dielectric properties suggesting the capability of potential candidates for microwave absorption applications with enhanced electromagnetic properties.

5.
Foods ; 12(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36900458

RESUMEN

This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that ß-turns and ß-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.

6.
Materials (Basel) ; 15(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36079432

RESUMEN

The aging of polypropylene (PP) composites reinforced with date palm nanofiber (DNF) was investigated in this study in order to predict their long-term performance. To produce composites, date palm nanofibers in the range of 1-5 wt% loading were dry-melt-blended with polypropylene. These biocomposites were then subjected to UV exposure (Xenon arch source) for accelerated weathering for 250 and 500 h according to a standard method. The change in thermal properties before and after accelerated weathering was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA analysis shows that the maximum degradation temperature for sample at 1 wt% loading was 382.7 °C, which slightly decreased to 379.9 °C after 250 h and to 367.7 °C after 500 h of weathering. DSC analysis also revealed lower crystallinity of the same samples after exposure to accelerated weathering. Mechanical properties were also studied to identify the damage induced by accelerated weathering. The tensile strength of the highest loading (5 wt%) of the sample was found to occur at 34.83 MPa, which was slightly lowered to 31.64 after 500 h treatment. A minimal decrease in tensile strength, deterioration, and weathering-induced oxidation indicates the excellent stability of these composites. Therefore, our study provides insight into the aging behavior of such composites, which may be useful in dry conditions, as well as nonstructural automotive and other parts for which minimum tensile strength (~25 MPa) is specified.

7.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145873

RESUMEN

An all-solid−state dye-sensitized solar cell is one of the non-fossil fuel-based electrochemical devices for electricity generation in a high-temperature region. This device utilizes a redox mediator, which is a fast ion-conducting solid polymer electrolyte (SPE). The SPE makes the device economical, thinner, and safer in high-temperature regions. The SPE generally has a form of matrix−plasticizer−redox salts. Succinonitrile (SN) is generally employed as a plasticizer for reducing the crystallinity of poly(ethylene oxide), abbreviated as PEO, a common polymeric matrix. In the present paper, the structural and thermal properties of tetramethyl succinonitrile (TMSN) were compared with SN for its application as a solid plasticizer. TMSN and SN both are plastic crystals. TMSN has four methyl groups by replacing the hydrogen of the SN, resulting in higher molecular weight, solid−solid phase transition temperature, and melting temperature. We thoroughly studied the structural, thermal, and electrical properties of the [(1−x)PEO: xTMSN] blend for utilizing it as a matrix, where x = 0−0.25 in mole fraction. The FT-IR spectra and XRD patterns of the blends exhibited PEO-alike up to x = 0.15 mole and TMSN-alike for x > 0.15 mole. Differential scanning calorimetry revealed formation of a eutectic phase from x = 0.1 mole and phase separation from x = 0.15 mole. The blends with x = 0.1−0.15 mole had a low value of PEO crystallinity. Thermogravimetric analysis showed thermal stability of the blends up to 75 °C. The blends exhibited electrical conductivity, σ25°C more than 10−9 S cm−1, and Arrhenius behavior (activation energy, ~0.8 eV) in a temperature region, 25−50 °C.

8.
Membranes (Basel) ; 12(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35877854

RESUMEN

This work presents the development of a cost-effective electric-stimulus-responsive bending actuator based on a sulfonated polyvinyl chloride (SPVC)-phosphotungstic acid (PTA) ionic polymer-metal composite (IPMC), using a simple solution-casting method followed by chemical reduction of platinum (Pt) ions as an electrode. The characterizations of the prepared IPMC were performed using Fourier-transform infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques, Thermogravimetric analysis (TGA), and Energy-dispersive X-ray (EDX) analysis. Excellent ion-exchange capacity (IEC) and proton conductivity (PC), with values of ca. 1.98 meq·g-1 and ca. 1.6 mS·cm-1, respectively, were observed. The water uptake (WU) and water loss (WL) capacities of the IPMC membranes were measured at 25 °C, and found to have maxima of ca. 48% for 10 h, and ca. 36% at 6 V DC for almost 9 min, respectively. To analyze the actuation performance of the developed membrane, tip displacement and actuation force measurements were conducted. Tip displacement was found to be ca. 15.1 mm, whereas bending actuation was found to be 0.242 mN at 4 V DC. The moderate water loss, good proton conductivity (PC), high thermal stability, and good electrochemical properties of the developed IPMC membrane actuator position it as a cost-effective alternative to highly expensive conventional perfluorinated polymer-based actuators.

9.
Gels ; 8(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35735674

RESUMEN

Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.

11.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566879

RESUMEN

There is a demand for long afterglow composites due to their potential applications in nighttime signal boards, sensors, and biomedical areas. In this study, Polypropylene (PP)/strontium aluminate-based composites [SrAl2O4:Eu2+/Dy3+ (SAO1) and Sr4Al14O25: Eu+2, Dy+3 (SAO2)] with maleic anhydride grafted PP compatibilizer (PRIEX) were prepared, and their auto-glowing properties were examined. After UV excitation at 320 nm, the PP/5PRIEX/SAO1 composites showed green emission at 520 nm, and blue emission was observed for PP/5PRIEX/SAO2 around 495 nm. The intensity of phosphorescence emission and phosphorescence decay was found to be proportional to the filler content (SAO1 and SAO2). The FTIR analysis excluded the copolymerization reaction between the SAO1 and SAO2 fillers and the PP matrix during the high-temperature melt mixing process. The SAO1 and SAO2 fillers decreased the overall crystallinity of the composites without affecting the Tm and Tc (melting and crystallization temperature) values. The thermal stability of the composites was slightly improved with the SAO1 and SAO2 fillers, as seen from the TGA curve. Due to the plasticizing effect of the compatibilizer and the agglomeration of the SAO1 and SAO2 fillers, the tensile modulus, tensile strength, and storage modulus of the composites was found to be decreased with an increase in the SAO1 and SAO2 content. The decreasing effect was more pronounced, especially with the bulk-sized SAO2 filler.

12.
Polymers (Basel) ; 14(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35567039

RESUMEN

The solar cell has been considered one of the safest modes for electricity generation. In a dye-sensitized solar cell, a commonly used iodide/triiodide redox mediator inhibits back-electron transfer reactions, regenerates dyes, and reduces triiodide into iodide. The use of iodide/triiodide redox, however, imposes several problems and hence needs to be replaced by alternative redox. This paper reports the first Co2+/Co3+ solid redox mediators, prepared using [(1−x)succinonitrile: xPEO] as a matrix and LiTFSI, Co(bpy)3(TFSI)2, and Co(bpy)3(TFSI)3 as sources of ions. The electrolytes are referred to as SN_E (x = 0), Blend 1_E (x = 0.5 with the ethereal oxygen of the PEO-to-lithium ion molar ratio (EO/Li+) of 113), Blend 2_E (x = 0.5; EO/Li+ = 226), and PEO_E (x = 1; EO/Li+ = 226), which achieved electrical conductivity of 2.1 × 10−3, 4.3 × 10−4, 7.2 × 10−4, and 9.7 × 10−7 S cm−1, respectively at 25 °C. Only the blend-based polymer electrolytes exhibited the Vogel-Tamman-Fulcher-type behavior (vitreous nature) with a required low pseudo-activation energy (0.05 eV), thermal stability up to 125 °C, and transparency in UV-A, visible, and near-infrared regions. FT-IR spectroscopy demonstrated the interaction between salt and matrix in the following order: SN_E < Blend 2_E < Blend 1_E << PEO_E. The results were compared with those of acetonitrile-based liquid electrolyte, ACN_E.

13.
Can Oncol Nurs J ; 32(2): 319-321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582256

RESUMEN

Rationale: Approximately 8,000 new cases of pediatric cancer arise annually in Pakistan. However, there is a dire survival rate of 30-35% due to various factors, especially a lack of competent nurses in pediatric oncology care. Public-private partnerships (PPP) supported by a My Child Matters (MCM) Grant from Sanofi Espoir Foundation was granted to Indus Hospital & Health Network (IH&HN) to improve pediatric nursing standards. Methods: Starting in 2016, nurses from hospitals across Pakistan were enrolled in a continuing education program, which included a comprehensive, hands-on training component. A group chat was created following the training for communication and mentorship regarding challenges faced locally. Results: Seventy-seven pediatric oncology nurses were successfully trained by IH&HN over three years. Discussion: Challenges included lack of government funding, shortage of specialist nurses, frequent shifting of nurses away from pediatric care, and indifferent attitudes. Success of the project could have been maximized if trained nurses were motivated and retained by hospitals. Conclusion: Development and maintenance of PPP in national healthcare systems is essential to improve pediatric oncology nursing care.

14.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35407222

RESUMEN

The current study delineates the use of date-palm-derived cellulose nanocrystals (dp-CNCs) as reinforcing agents. dp-CNCs were incorporated in varying amounts to poly(vinyl alcohol)/guar-gum-based phase-separated composite films. The films were prepared by using the solution casting method, which employed glutaraldehyde as the crosslinking agent. Subsequently, the films were characterized by bright field and polarizing microscopy, UV-Vis spectroscopy, FTIR spectroscopy, and mechanical study. The microscopic techniques suggested that phase-separated films were formed, whose microstructure could be tailored by incorporating dp-CNCs. At higher levels of dp-CNC content, microcracks could be observed in the films. The transparency of the phase-separated films was not significantly altered when the dp-CNC content was on the lower side. FTIR spectroscopy suggested the presence of hydrogen bonding within the phase-separated films. dp-CNCs showed reinforcing effects at the lowest amount, whereas the mechanical properties of the films were compromised at higher dp-CNC content. Moxifloxacin was included in the films to determine the capability of the films as a drug delivery vehicle. It was found that the release of the drug could be tailored by altering the dp-CNC content within the phase-separated films. In gist, the developed dp-CNC-loaded poly(vinyl alcohol)/guar-gum-based phase-separated composite films could be explored as a drug delivery vehicle.

15.
Sci Rep ; 12(1): 4467, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296742

RESUMEN

An electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a sufficient ion-exchange potential of 1.6 meq g-1 dry film. The absorption capacity of the membrane after almost 6 h of immersion was found to be ca. 245% at 45 °C. The electroless plating with Pt metal was carried out on both sides of the membrane that delivered an excellent proton conductivity of 1.9 × 10-3 S cm-1. Moreover, the scanning electron microscopy (SEM) was conducted to reflect the smooth and consistent surface that can prevent water loss. The water loss capacity of the membrane was found to be ca. 33% at 6 V for 16 min. These results suggest a good actuation output of the ionic polymer metal composite (IPMC) membrane once the electrical potential is applied. The electromechanical characterization displayed a maximum tip displacement of 32 mm at 3 V. A microgripping device based on multifigure IPMC membrane may be developed showing a good potential in micro-robotics.

16.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209224

RESUMEN

Cellulosic polysaccharides have increasingly been recognized as a viable substitute for the depleting petro-based feedstock due to numerous modification options for obtaining a plethora of bio-based materials. In this study, cellulose triacetate was synthesized from pure cellulose obtained from the waste lignocellulosic part of date palm (Phoenix dactylifera L.). To achieve a degree of substitution (DS) of the hydroxyl group of 2.9, a heterogeneous acetylation reaction was carried out with acetic anhydride as an acetyl donor. The obtained cellulose ester was compared with a commercially available derivative and characterized using various analytical methods. This cellulose triacetate contains approximately 43.9% acetyl and has a molecular weight of 205,102 g·mol-1. The maximum thermal decomposition temperature of acetate was found to be 380 °C, similar to that of a reference sample. Thus, the synthesized ester derivate can be suitable for fabricating biodegradable and "all cellulose" biocomposite systems.


Asunto(s)
Celulosa/análogos & derivados , Celulosa/química , Phoeniceae/química , Celulosa/síntesis química , Celulosa/aislamiento & purificación , Celulosa/ultraestructura , Fenómenos Químicos , Técnicas de Química Sintética , Análisis Espectral
17.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215581

RESUMEN

Herein, we present new approaches for developing sulfonated polyether ether ketone (SPEEK) and polyaniline-based (PANI) actuator formed by film-casting and chemical reduction of Pt electrodes. We have thoroughly studied the synthesis of SPEEK and characterized it by different analytical techniques. The ion-exchange capacity (IEC) and proton conductivity of SPEEK-PANI polymer membrane were calculated to be 1.98 mmol g-1 and 1.97 × 10-3 S cm-1, respectively. To develop an IPMC actuator, SPEEK was combined with PANI through in-situ polymerization method. SEM and XRD were used to check the morphology of the given SPEEK-PANI-Pt membrane. In addition, FT-IR and EDX techniques confirmed the molecular structure and chemical conformation of SPEEK-PANI polymer membrane. Pt electrode layers homogeneously dispersed on the IPMC membrane surface, which was demonstrated by smooth SEM micrographs. The actuation functioning, including the high bending deflection, proton conductivity, current density and IEC of IPMC actuator based on SPEEK-PANI-Pt, was obtained owing to its strong electrochemical and electromechanical characteristics. Synergistic combinations of SPEEK and PANI produced membrane that are flexible, mechanically strong and robust. The developed materials have immense capability as actuators for various applications including in biomimetics and robotics.

18.
Materials (Basel) ; 15(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35161084

RESUMEN

In this work, HDPE/strontium aluminate-based auto glowing composites (SrAl2O4: Eu, Dy (AG1) and Sr4Al14O25: Eu, Dy (AG2)) were prepared, and their phosphorescence studies were conducted. In HDPE/AG1 composites, the green emission was observed at ~500 nm after the UV excitation at 320 nm. The HDPE/AG2 has a blue emission at ~490 nm and, in both cases, the intensity of emission is proportional to the AG1 and AG2 content. The DSC data show that the total crystallinity of both the composites was decreased but with a more decreasing effect with the bulky AG2 filler. The melting and crystallization temperatures were intact, which shows the absence of any chemical modification during high shear and temperature processing. This observation is further supported by the ATR-FTIR studies where no new peaks appeared or disappeared from the HDPE peaks. The tensile strength and modulus of HDPE, HDPE/AG1, and HDPE/AG2 composites were improved with the AG1 and AG2 fillers. The rheological studies show the improvement in the complex viscosity and accordingly the storage modulus of the studied phosphorescent HDPE composites. The SEM images indicate better filler dispersion and filler-matrix adhesion, which improves the mechanical characteristics of the studied HDPE composites. The ageing studies in the glowing composites show that there is a decrease in the intensity of phosphorescence emission on exposure to drastic atmospheric conditions for a longer period and the composites become more brittle.

19.
Macromol Rapid Commun ; 43(6): e2100764, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35086162

RESUMEN

Dye-sensitized solar cell (DSSC) is a promising alternative to the commercially available amorphous silicon-based solar cell because of several advantageous properties. A DSSC with a fast ion conducting solid polymer electrolyte is required for the arid atmosphere of Gulf countries. In this work, a new matrix, poly(ethylene oxide)-tetramethyl succinonitrile blend to synthesize a blend-LiI-I2 solid polymer electrolyte for the DSSC application has been proposed. The tetramethyl succinonitrile is a member of plastic crystal with a solid-solid phase transition temperature (Tpc ) of ≈71 °C and melting temperature (Tm ) of ≈170.5 °C. Its molar fraction, 0.1-0.15 is sufficient enough for synthesizing a polymer electrolyte with electrical conductivity of >10-4 S cm-1 at room temperature. This electrolyte shows Vogel-Tamman-Fulcher type behavior with a low value (≈0.083 eV) of pseudo-activation energy for easy ion transport. The results of Fourier-transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies reveal the plasticizing effect of tetramethyl succinonitrile to form an amorphous phase. This electrolyte results in a ≈661% gain in short-circuit current density and thereby a ≈552% gain in the cell efficiency (≈3.5%) with respect to the DSSC prepared with the tetramethyl succinonitrile-free electrolyte.


Asunto(s)
Polietilenglicoles , Polímeros , Electrólitos/química , Óxido de Etileno , Nitrilos , Plastificantes , Polietilenglicoles/química , Polímeros/química
20.
Polymers (Basel) ; 13(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200274

RESUMEN

Highly pure cellulosic polymers obtained from waste lignocellulose offer great potential for designing novel materials in the concept of biorefinery. In this work, alpha-cellulose and nanocrystalline cellulose were isolated from the date palm trunk mesh (DPTM) through a series of physicochemical treatments. Supercritical carbon dioxide treatment was used to remove soluble extractives, and concentrated alkali pretreatment was used to eliminate the lignin portion selectively to obtain alpha-cellulose in approximately 94% yield. Further treatments of this cellulose yielded nanocrystalline cellulose. The structure-property relationship studies were carried out by characterizing the obtained polymers by various standard methods and analytical techniques such as Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersive X-ray diffraction (EDX-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost 65% yield of pure cellulose was achieved, out of which 94% is the alpha-cellulose. This cellulose shows good thermal stability and crystallinity. The microscopic analysis of the nanocellulose showed a heterogeneous mix of irregular-shaped particles with a size range of 20-60 nm. The percentage crystallinity of alpha-cellulose and nanocellulose was found to be 68.9 and 71.8, respectively. Thus, this study shows that, this DPTM-based low-cost waste biomass can be a potential source to obtain cellulose and nano-cellulose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...