Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Res Struct Biol ; 7: 100136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463934

RESUMEN

Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/ß arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.

2.
Int J Biol Macromol ; 167: 1168-1175, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33197475

RESUMEN

White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD) severely affecting crustacean life forms, is highly contagious and forms the principal cause of massive economic losses in the shrimp aquaculture industry. Previous studies have demonstrated thymidylate synthase as a successful anti-cancer therapeutic drug target, leading to various anti-cancer drugs. The differential utilization of nucleotide precursors between white spot syndrome virus and shrimp encouraged us to analyze WSSV-thymidylate synthase (wTS). Here, we report the crystal structures of wTS in its apo-form and as a ternary complex with deoxyuridine monophosphate (dUMP) and methotrexate at a resolution of 2.35 Å and 2.6 Å, respectively. wTS possesses a fold characteristic to known thymidylate synthase (TS) structures. Like other TS structures, the apo-form of wTS displays an open conformation, whereas the wTS ternary complex attains a closed conformation. While the C-terminal loop maintains a typical distance from methotrexate, the Sγ atom of the catalytic Cys is positioned farther from the C6 atom of dUMP. Altogether, we report the first TS structure from a crustacean virus and highlight its distinction from shrimp and other TS structures.


Asunto(s)
Nucleótidos de Desoxiuracil/química , Metotrexato/química , Penaeidae/virología , Timidilato Sintasa/química , Virus del Síndrome de la Mancha Blanca 1/química , Animales , Crustáceos/virología , Escherichia coli/química , Humanos , Enlace de Hidrógeno , Ligandos , Ratones , Modelos Moleculares , Conformación Molecular , Penaeidae/química , Dominios Proteicos , Proteínas Recombinantes
3.
Nat Commun ; 10(1): 3067, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296851

RESUMEN

WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Staphylococcus aureus/metabolismo , Zinc/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cationes Bivalentes/metabolismo , Histidina/genética , Histidina Quinasa/química , Histidina Quinasa/genética , Simulación de Dinámica Molecular , Mutación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Regulón/genética , Staphylococcus aureus/genética , Tirosina/genética
4.
Sci Rep ; 7(1): 15743, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29147015

RESUMEN

Evolution of a nano-machine consisting of multiple parts, each with a specific function, is a complex process. A change in one part should eventually result in changes in other parts, if the overall function is to be conserved. In bacterial flagella, the filament and the hook have distinct functions and their respective proteins, FliC and FlgE, have different three-dimensional structures. The filament functions as a helical propeller and the hook as a flexible universal joint. Two proteins, FlgK and FlgL, assure a smooth connectivity between the hook and the filament. Here we show that, in Campylobacter, the 3D structure of FlgK differs from that of its orthologs in Salmonella and Burkholderia, whose structures have previously been solved. Docking the model of the FlgK junction onto the structure of the Campylobacter hook provides some clues about its divergence. These data suggest how evolutionary pressure to adapt to structural constraints, due to the structure of Campylobacter hook, causes divergence of one element of a supra-molecular complex in order to maintain the function of the entire flagellar assembly.


Asunto(s)
Proteínas Bacterianas/química , Campylobacter/metabolismo , Flagelos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares
5.
Mol Pharmacol ; 82(5): 898-909, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22874414

RESUMEN

The human norepinephrine transporter (NET) is implicated in many neurological disorders and is a target of tricyclic antidepressants and nisoxetine (NX). We used molecular docking simulations to guide the identification of residues likely to affect substrate transport and ligand interactions at NET. Mutations to alanine identified a hydrophobic pocket in the extracellular cavity of NET, comprising residues Thr80, Phe317, and Tyr317, which was critical for efficient norepinephrine (NE) transport. This secondary NE substrate site (NESS-2) overlapped the NX binding site, comprising Tyr84, Phe317, and Tyr317, and was positioned ∼11 Šextracellular to the primary site for NE (NESS-1). Thr80 in NESS-2 appeared to be critical in positioning NE for efficient translocation to NESS-1. Three residues identified as being involved in gating the reverse transport of NE (Arg81, Gln314, and Asp473) did not affect NE affinity for NESS-1. Mutating residues adjacent to NESS-2 abolished NET expression (D75A and L76A) or appeared to affect NET folding (S419A), suggesting important roles in stabilizing NET structure, whereas W308A and F388A at the top of NESS-2 abolished both NE transport and NX binding. Our findings are consistent with a multistep model of substrate transport by NET, for which a second, shallow extracellular NE substrate site (NESS-2) is required for efficient NE transport by NET.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Norepinefrina/metabolismo , Inhibidores de Captación Adrenérgica/metabolismo , Animales , Sitios de Unión , Transporte Biológico , Células COS , Chlorocebus aethiops , Simulación por Computador , Fluoxetina/análogos & derivados , Fluoxetina/metabolismo , Humanos , Leucina/química , Leucina/metabolismo , Mutagénesis Sitio-Dirigida , Norepinefrina/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...