Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113655, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38219146

RESUMEN

Alterations in the exonuclease domain of DNA polymerase ε cause ultramutated cancers. These cancers accumulate AGA>ATA transversions; however, their genomic features beyond the trinucleotide motifs are obscure. We analyze the extended DNA context of ultramutation using whole-exome sequencing data from 524 endometrial and 395 colorectal tumors. We find that G>T transversions in POLE-mutant tumors predominantly affect sequences containing at least six consecutive purines, with a striking preference for certain positions within polypurine tracts. Using this signature, we develop a machine-learning classifier to identify tumors with hitherto unknown POLE drivers and validate two drivers, POLE-E978G and POLE-S461L, by functional assays in yeast. Unlike other pathogenic variants, the E978G substitution affects the polymerase domain of Pol ε. We further show that tumors with POLD1 drivers share the extended signature of POLE ultramutation. These findings expand the understanding of ultramutation mechanisms and highlight peculiar mutagenic properties of polypurine tracts in the human genome.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , Humanos , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Mutación/genética , Mutagénesis , Neoplasias Colorrectales/patología , ADN Polimerasa III/genética , Secuenciación del Exoma , Proteínas de Unión a Poli-ADP-Ribosa/genética
2.
Biophys Rev ; 15(3): 307-311, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37396446

RESUMEN

This commentary article represents the latest edition of the Biophysical Reviews 'Editors' Roundup' Series - a platform made available to the editorial board members of any journal with a genuine interest in promoting biophysical content. Each journal associated editor is able to submit a short description of up to five articles recently appearing in their journals with an explanation of why these articles are of interest. This edition (Vol. 15 Issue 3 June 2023) carries contributions from editorial members associated with Biophysics and Physicobiology (Biophysical Society of Japan), Biophysics (Russian Academy of Sciences), Cell Biochemistry and Biophysics (Springer), and Biophysical Reviews (IUPAB-International Union for Pure and Applied Biophysics).

3.
Microsc Res Tech ; 86(7): 781-790, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125595

RESUMEN

So far, only a few articles have demonstrated the possibility of correlated AFM-TEM imaging - sequential imaging of the same individual objects using atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The current work contributes to the development of this approach by giving a step-by-step procedure, which yields pairs of correlated AFM-TEM images. We describe the application of correlation AFM-TEM microscopy to lipid nanoparticles (small extracellular vesicles and liposomes). The sizes of individual particles measured by the two methods were in good agreement, taking the tip broadening into account. The correlated AFM-TEM imaging can be valuable for single-particle analysis and nanometrology.


Asunto(s)
Liposomas , Nanopartículas , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión
4.
Biophys Rev ; 15(2): 157-160, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113564

RESUMEN

The IUPAB Biophysical Reviews journal provides a regular forum, known as the "Editors' Roundup," that is available to editorial board members of any biophysics-related journal to contribute a personal recommendation of articles appearing within their publications. This latest Issue of the Editors' Roundup carries recommendations from editorial board members associated with the following journals, Cell Biochemistry and Biophysics, Biophysics, and the Biophysical Reviews journal.

5.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108133

RESUMEN

Scaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique. In flat scaffolds (scaffold-1), one side was more porous (pore size 100-300 µm), while the other side was smoother (pore size 10-50 µm). Such scaffolds are suitable for the in vitro cultivation of rat mesenchymal stem cells and 3T3 fibroblasts, and, upon subcutaneous implantation to older rats, they cause moderate inflammation and the formation of a fibrous capsule. Scaffold-2s are homogeneous volumetric hard sponges (pore size 30-300 µm) with more structured pores. They were suitable for the in vitro culturing of 3T3 fibroblasts. Scaffold-2s were used to manufacture a conduit from the PHB/PHBV tube with scaffold-2 as a filler. The subcutaneous implantation of such conduits to older rats resulted in gradual soft connective tissue sprouting through the filler material of the scaffold-2 without any visible inflammatory processes. Thus, scaffold-2 can be used as a guide for connective tissue sprouting. The obtained data are advanced studies for reconstructive surgery and tissue engineering application for the elderly patients.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Ácido 3-Hidroxibutírico , Ingeniería de Tejidos/métodos , Fibroblastos , Poliésteres/química , Porosidad
6.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203380

RESUMEN

The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.


Asunto(s)
Limosilactobacillus fermentum , Nanopartículas de Magnetita , Polihidroxibutiratos , Ácido 3-Hidroxibutírico , Escherichia coli , Campos Magnéticos
7.
Biophys Rev ; 14(5): 1085-1091, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36345281

RESUMEN

This commentary constitutes the October edition of the 'Editors' roundup'-a multi-author omnibus of personal recommendations to interesting biophysics-related articles contributed by members of the editorial boards of leading international biophysics journals. The present commentary contains contributions from Progress in Biochemistry and Biophysics (an official journal of the Biophysical Society of China), European Biophysics Journal (the official journal of the European Biophysical Societies Association), Biophysical Reviews (the official IUPAB journal), and Biophysics (an official journal of the Russian Academy of Sciences). This edition of the Editors' Roundup also contains a new section from an editor at large who has provided selections from a number of journals on a single thematic topic.

8.
Biomedicines ; 10(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36289740

RESUMEN

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

9.
ACS Appl Bio Mater ; 5(8): 3999-4019, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35925883

RESUMEN

Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization─higher than that published in the literature─was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats.


Asunto(s)
Óxido Ferrosoférrico , Andamios del Tejido , Animales , Hidroxibutiratos , Lipasa , Fenómenos Magnéticos , Poliésteres , Ratas , Ratas Wistar , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
Viruses ; 14(8)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893668

RESUMEN

The evolution and the emergence of new mutations of viruses affect their transmissibility and/or pathogenicity features, depending on different evolutionary scenarios of virus adaptation to the host. A typical trade-off scenario of SARS-CoV-2 evolution has been proposed, which leads to the appearance of an Omicron strain with lowered lethality, yet enhanced transmissibility. This direction of evolution might be partly explained by virus adaptation to therapeutic agents and enhanced escape from vaccine-induced and natural immunity formed by other SARS-CoV-2 strains. Omicron's high mutation rate in the Spike protein, as well as its previously described high genome mutation rate (Kandeel et al., 2021), revealed a gap between it and other SARS-CoV-2 strains, indicating the absence of a transitional evolutionary form to the Omicron strain. Therefore, Omicron has emerged as a new serotype divergent from the evolutionary lineage of other SARS-CoV-2 strains. Omicron is a rapidly evolving variant of high concern, whose new subvariants continue to manifest. Its further understanding and the further monitoring of key mutations that provide virus immune escape and/or high affinity towards the receptor could be useful for vaccine and therapeutic development in order to control the evolutionary direction of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Evolución Molecular , Evasión Inmune , SARS-CoV-2 , COVID-19/inmunología , COVID-19/virología , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
11.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808716

RESUMEN

Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films-water-assisted self-assembly ("breath figure") and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs' attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can "feel" the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.

12.
Crit Rev Oncol Hematol ; 175: 103724, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35609774

RESUMEN

The use of bioengineering methods and approaches is extremely promising for the development of experimental models of cancer, especially head and neck squamous cell carcinomas (HNSCC) that are characterized by early metastasis and rapid progression., for testing novel anticancer drugs and diagnostics. This review summarizes the most relevant HNSCC tumor models used to this day as well as future directions for improved modeling of the malignant disease. Apart from conventional 2D-cell cultivation methods and in vivo animal cancer models a number of bioengineering techniques of modeling HNSCC tumors were reported: genetic-engineering, ethanol/tobacco exposure experiment, spheroids, hydrogel-based cell culture, scaffold-based cell culture, microfluidics, bone-tumor niche cell culture, cancer and normal cells co-culture, cancer cells, and bacteria co-culture. An organized set of these models can constitute a system of HNSCC experimental modeling, which gives potential towards developing the newest approaches in the diagnosis, prevention, and treatment of HNSCC.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Animales , Bioingeniería , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia
13.
Viruses ; 14(2)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35215888

RESUMEN

Currently, SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) is responsible for one of the most deleterious pandemics of our time. The interaction between the ACE2 receptors at the surface of human cells and the viral Spike (S) protein triggers the infection, making the receptor-binding domain (RBD) of the SARS-CoV-2 S-protein a focal target for the neutralizing antibodies (Abs). Despite the recent progress in the development and deployment of vaccines, the emergence of novel variants of SARS-CoV-2 insensitive to Abs produced in response to the vaccine administration and/or monoclonal ones represent a potential danger. Here, we analyzed the diversity of neutralizing Ab epitopes and assessed the possible effects of single and multiple mutations in the RBD of SARS-CoV-2 S-protein on its binding affinity to various antibodies and the human ACE2 receptor using bioinformatics approaches. The RBD-Ab complexes with experimentally resolved structures were grouped into four clusters with distinct features at sequence and structure level. The performed computational analysis indicates that while single amino acid replacements in RBD may only cause partial impairment of the Abs binding, moreover, limited to specific epitopes, the variants of SARS-CoV-2 with multiple mutations, including some which were already detected in the population, may potentially result in a much broader antigenic escape. Further analysis of the existing RBD variants pointed to the trade-off between ACE2 binding and antigenic escape as a key limiting factor for the emergence of novel SAR-CoV-2 strains, as the naturally occurring mutations in RBD tend to reduce its binding affinity to Abs but not to ACE2. The results provide guidelines for further experimental studies aiming to identify high-risk RBD mutations that allow for an antigenic escape.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Sitios de Unión de Anticuerpos/genética , Biología Computacional/métodos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/metabolismo , Interacciones Microbiota-Huesped/genética , Humanos , Unión Proteica , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
14.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35159706

RESUMEN

Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.

15.
Microsc Res Tech ; 85(2): 562-569, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34498784

RESUMEN

The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ß-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.


Asunto(s)
COVID-19 , Propiolactona , Animales , Chlorocebus aethiops , Humanos , Pandemias , SARS-CoV-2 , Vacunas de Productos Inactivados , Células Vero
16.
Emerg Microbes Infect ; 10(1): 1790-1806, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34427172

RESUMEN

The unprecedented in recent history global COVID-19 pandemic urged the implementation of all existing vaccine platforms to ensure the availability of the vaccines against COVID-19 to every country in the world. Despite the multitude of high-quality papers describing clinical trials of different vaccine products, basic detailed data on general toxicity, reproductive toxicity, immunogenicity, protective efficacy and durability of immune response in animal models are scarce. Here, we developed a ß-propiolactone-inactivated whole virion vaccine CoviVac and assessed its safety, protective efficacy, immunogenicity and stability of the immune response in rodents and non-human primates. The vaccine showed no signs of acute/chronic, reproductive, embryo- and fetotoxicity, or teratogenic effects, as well as no allergenic properties in studied animal species. The vaccine induced stable and robust humoral immune response both in form of specific anti-SARS-CoV-2 IgG and NAbs in mice, Syrian hamsters, and common marmosets. The NAb levels did not decrease significantly over the course of one year. The course of two immunizations protected Syrian hamsters from severe pneumonia upon intranasal challenge with the live virus. Robustness of the vaccine manufacturing process was demonstrated as well. These data encouraged further evaluation of CoviVac in clinical trials.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Humoral , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Callithrix , Cricetinae , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Cobayas , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/inmunología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , SARS-CoV-2/genética , Factores de Tiempo , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos
17.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806280

RESUMEN

Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein-protein interaction and oligomerization in a constraining environment.


Asunto(s)
Halorrodopsinas/química , Membrana Dobles de Lípidos/química , Rodopsinas Sensoriales/química , Alquenos/química , Fenómenos Biofísicos , Dimiristoilfosfatidilcolina/química , Espectroscopía de Resonancia por Spin del Electrón , Halobacteriaceae/química , Halobacteriaceae/efectos de la radiación , Halorrodopsinas/efectos de la radiación , Maleatos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Procesos Fotoquímicos , Rodopsinas Sensoriales/efectos de la radiación , Marcadores de Spin
18.
J Fungi (Basel) ; 7(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562593

RESUMEN

The cell wall sensor Wsc1 belongs to a small family of transmembrane proteins, which are crucial to sustain cell integrity in yeast and other fungi. Wsc1 acts as a mechanosensor of the cell wall integrity (CWI) signal transduction pathway which responds to external stresses. Here we report on the purification of Wsc1 by its trapping in water-soluble polymer-stabilized lipid nanoparticles, obtained with an amphipathic styrene-maleic acid (SMA) copolymer. The latter was employed to transfer tagged sensors from their native yeast membranes into SMA/lipid particles (SMALPs), which allows their purification in a functional state, i.e., avoiding denaturation. The SMALPs composition was characterized by fluorescence correlation spectroscopy, followed by two-dimensional image acquisition from single particle transmission electron microscopy to build a three-dimensional model of the sensor. The latter confirms that Wsc1 consists of a large extracellular domain connected to a smaller intracellular part by a single transmembrane domain, which is embedded within the hydrophobic moiety of the lipid bilayer. The successful extraction of a sensor from the yeast plasma membrane by a detergent-free procedure into a native-like membrane environment provides new prospects for in vitro structural and functional studies of yeast plasma proteins which are likely to be applicable to other fungi, including plant and human pathogens.

19.
Polymers (Basel) ; 14(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35012152

RESUMEN

This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.

20.
Nat Commun ; 11(1): 5707, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177509

RESUMEN

Phytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1. Functional analysis of VirChR1 shows that it is a highly selective, Na+/K+-conducting channel and, in contrast to known cation channelrhodopsins, it is impermeable to Ca2+ ions. We show that, upon illumination, VirChR1 is able to drive neural firing. The 1.4 Å resolution structure of OLPVR1 reveals remarkable differences from the known channelrhodopsins and a unique ion-conducting pathway. Thus, viral rhodopsins 1 represent a unique, large group of light-gated channels (viral channelrhodopsins, VirChR1s). In nature, VirChR1s likely mediate phototaxis of algae enhancing the host anabolic processes to support virus reproduction, and therefore, might play a major role in global phytoplankton dynamics. Moreover, VirChR1s have unique potential for optogenetics as they lack possibly noxious Ca2+ permeability.


Asunto(s)
Fitoplancton/virología , Rodopsina/química , Rodopsina/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Animales , Calcio/metabolismo , Cationes , Células Cultivadas , Channelrhodopsins/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Luz , Neuronas/metabolismo , Filogenia , Conformación Proteica , Ratas Wistar , Rodopsina/genética , Relación Estructura-Actividad , Proteínas Virales/genética , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...