Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Phys ; 50(9): 5817-5827, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37493525

RESUMEN

BACKGROUND: The beam energy is one of the most significant parameters in particle therapy since it is directly correlated to the particles' penetration depth inside the patient. Nowadays, the range accuracy is guaranteed by offline routine quality control checks mainly performed with water phantoms, 2D detectors with PMMA wedges, or multi-layer ionization chambers. The latter feature low sensitivity, slow collection time, and response dependent on external parameters, which represent limiting factors for the quality controls of beams delivered with fast energy switching modalities, as foreseen in future treatments. In this context, a device based on solid-state detectors technology, able to perform a direct and absolute beam energy measurement, is proposed as a viable alternative for quality assurance measurements and beam commissioning, paving the way for online range monitoring and treatment verification. PURPOSE: This work follows the proof of concept of an energy monitoring system for clinical proton beams, based on Ultra Fast Silicon Detectors (featuring tenths of ps time resolution in 50 µm active thickness, and single particle detection capability) and time-of-flight techniques. An upgrade of such a system is presented here, together with the description of a dedicated self-calibration method, proving that this second prototype is able to assess the mean particles energy of a monoenergetic beam without any constraint on the beam temporal structure, neither any a priori knowledge of the beam energy for the calibration of the system. METHODS: A new detector geometry, consisting of sensors segmented in strips, has been designed and implemented in order to enhance the statistics of coincident protons, thus improving the accuracy of the measured time differences. The prototype was tested on the cyclotron proton beam of the Trento Protontherapy Center (TPC). In addition, a dedicated self-calibration method, exploiting the measurement of monoenergetic beams crossing the two telescope sensors for different flight distances, was introduced to remove the systematic uncertainties independently from any external reference. RESULTS: The novel calibration strategy was applied to the experimental data collected at TPC (Trento) and CNAO (Pavia). Deviations between measured and reference beam energies in the order of a few hundreds of keV with a maximum uncertainty of 0.5 MeV were found, in compliance with the clinically required water range accuracy of 1 mm. CONCLUSIONS: The presented version of the telescope system, minimally perturbative of the beam, relies on a few seconds of acquisition time to achieve the required clinical accuracy and therefore represents a feasible solution for beam commission, quality assurance checks, and online beam energy monitoring.


Asunto(s)
Terapia de Protones , Calibración , Terapia de Protones/normas , Factores de Tiempo , Humanos
2.
Med Phys ; 49(10): 6588-6598, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35946490

RESUMEN

PURPOSE: To investigate the feasibility of radioluminescence imaging (RLI) as a novel 2D quality assurance (QA) dosimetry system for CyberKnife®. METHODS: We developed a field size measurement system based on a commercial complementary metal oxide semiconductor (CMOS) camera facing a radioluminescence screen located at the isocenter normal to the beam axis. The radioluminescence light collected by a lens was used to measure 2D dose distributions. An image transformation procedure, based on two reference phantoms, was developed to correct for projective distortion due to the angle (15°) between the optical and beam axis. Dose profiles were measured for field sizes ranging from 5 mm to 60 mm using fixed circular and iris collimators and compared against gafchromic (GC) film. The corresponding full width at half maximum (FWHM) was measured using RLI and benchmarked against GC film. A small shift in the source-to-surface distance (SSD) of the measurement plane was intentionally introduced to test the sensitivity of the RLI system to field size variations. To assess reproducibility, the entire RLI procedure was tested by acquiring the 60 mm circle field three times on two consecutive days. RESULTS: The implemented procedure for perspective image distortion correction showed improvements of up to 1 mm using the star phantom against the square phantom. The FWHM measurements using the RLI system indicated a strong agreement with GC film with maximum absolute difference equal to 0.131 mm for fixed collimators and 0.056 mm for the iris. A 2D analysis of RLI with respect to GC film showed that the differences in the central region are negligible, while small discrepancies are in the penumbra region. Changes in field sizes of 0.2 mm were detectable by RLI. Repeatability measurements of the beam FWHM have shown a standard deviation equal to 0.11 mm. CONCLUSIONS: The first application of a RLI approach for CyberKnife® field size measurement was presented and tested. Results are in agreement with GC film measurements. Spatial resolution and immediate availability of the data indicate that RLI is a feasible technique for robotic radiosurgery QA.


Asunto(s)
Radiocirugia , Procedimientos Quirúrgicos Robotizados , Estudios de Factibilidad , Óxidos , Radiometría/métodos , Radiocirugia/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA