Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Med Imaging ; 20: 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389382

RESUMEN

BACKGROUND: Segmenting tumors in MRI scans is a difficult and time-consuming task for radiologists. This is because tumors come in different shapes, sizes, and textures, making them hard to identify visually. OBJECTIVE: This study proposes a new method called the enhanced regularized ensemble encoder-decoder network (EREEDN) for more accurate brain tumor segmentation. METHODS: The EREEDN model first preprocesses the MRI data by normalizing the intensity levels. It then uses a series of autoencoder networks to segment the tumor. These autoencoder networks are trained using back-propagation and gradient descent. To prevent overfitting, the EREEDN model also uses L2 regularization and dropout mechanisms. RESULTS: The EREEDN model was evaluated on the BraTS 2020 dataset. It achieved high performance on various metrics, including accuracy, sensitivity, specificity, and dice coefficient score. The EREEDN model outperformed other methods on the BraTS 2020 dataset. CONCLUSION: The EREEDN model is a promising new method for brain tumor segmentation. It is more accurate and efficient than previous methods. Future studies will focus on improving the performance of the EREEDN model on complex tumors.


Asunto(s)
Neoplasias Encefálicas , Redes Neurales de la Computación , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
2.
Diagnostics (Basel) ; 13(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37370989

RESUMEN

A brain tumor is a significant health concern that directly or indirectly affects thousands of people worldwide. The early and accurate detection of brain tumors is vital to the successful treatment of brain tumors and the improved quality of life of the patient. There are several imaging techniques used for brain tumor detection. Among these techniques, the most common are MRI and CT scans. To overcome the limitations associated with these traditional techniques, computer-aided analysis of brain images has gained attention in recent years as a promising approach for accurate and reliable brain tumor detection. In this study, we proposed a fine-tuned vision transformer model that uses advanced image processing and deep learning techniques to accurately identify the presence of brain tumors in the input data images. The proposed model FT-ViT involves several stages, including the processing of data, patch processing, concatenation, feature selection and learning, and fine tuning. Upon training the model on the CE-MRI dataset containing 5712 brain tumor images, the model could accurately identify the tumors. The FT-Vit model achieved an accuracy of 98.13%. The proposed method offers high accuracy and can significantly reduce the workload of radiologists, making it a practical approach in medical science. However, further research can be conducted to diagnose more complex and rare types of tumors with more accuracy and reliability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA