Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(11): 3426-3432, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30589176

RESUMEN

Manganese oxide (MnOx ) electrocatalysts are examined herein by in situ soft X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L-edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn-O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K-edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.

2.
Chempluschem ; 83(7): 721-727, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950637

RESUMEN

MnOx films electrodeposited under basic, neutral, and acidic conditions from an ionic liquid were investigated by means of X-ray absorption spectroscopy at the manganese L2,3 -edges and the oxygen K-edge. Such films can serve as catalysts for the water oxidation reaction. Previous studies showed that the catalytic activity could be controlled by varying the deposition parameters, which influence the formation of MnOx phases and the film composition. Herein the film compositions are investigated in detail, indicating different ratios of MnOx structural phases in the films. All films in the series predominately consist of varying proportions of three MnOx phases-Mn2 O3 , Mn3 O4 , and birnessite, while an increase of the average Mn oxidation state in the film is identified when going from basic to acidic conditions during electrodeposition. The contribution of these three phases shows a systematic dependency on the pH during electrodeposition. While no specific single MnOx phase was found to dominate the composition of samples that were previously found to show high catalytic activity, the X-ray spectroscopic results revealed the compositions of those samples prepared under close to neutral conditions to be most sensitive to changes in pH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA