Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Med Mushrooms ; 25(12): 43-53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37947063

RESUMEN

Chemical investigation of the polypore fungus Fistulina hepatica resulted in the isolation of five compounds, including four new polyacetylenic fatty acid derivatives - isocinnatriacetin B (1), isocinnatriacetin A (2), cinna-triacetin C (3) and ethylcinnatriacetin A (4) together with one known polyacetylene fatty acid derivative - cinnatriacetin A (5). The structures were elucidated using spectroscopic methods (UV, NMR, HR-ESIMS) along with comparison to literature data. Antibacterial activity screening of compounds 1-5 against ESKAPE bacterial strains in vitro with zones of inhibition (ZOI) was performed and MIC values were established for the most active compounds (3 and 4). Together with that morphological and growth parameters under solid-phase cultivation were also researched.


Asunto(s)
Agaricales , Basidiomycota , Polímero Poliacetilénico/farmacología , Basidiomycota/química , Antibacterianos , Poliinos/farmacología , Ácidos Grasos , Estructura Molecular
2.
Nat Prod Res ; : 1-10, 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37004996

RESUMEN

Chemical investigation of the hydnoid fungus Sarcodontia setosa resulted in the isolation of five compounds, including two new sarcodontic acid derivatives - setosic acid (1) and 7,8-dehydrohomosarcodontic acid (2) along with three known benzoquinone pigments - sarcodontic acid (3), 4,5-dehydrosarcodontic acid (4) and dihydrosarcodontic acid (5). The structures were elucidated using spectroscopic methods (UV, NMR and HR-ESIMS). The biosynthetic relationship of the isolated compounds is proposed and discussed. Antibacterial activity screening of compounds 1-5 against ESKAPE bacterial strains in vitro with zones of inhibition was performed and MIC values were established for the most active compounds (3 and 5).

3.
J Fungi (Basel) ; 8(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205932

RESUMEN

Phosphatidylcholines (PC) are the main membrane lipid constituents comprising more than 50% of total glycerophospholipids. They coordinate a number of cell functions, particularly cell growth, homeostasis, secretion, recognition and communication. In basidial fungi PC are synthesized via the Kennedy pathway as well as through methylation of phosphatidylethanolamines (PE) and then undergo remodeling in Lands cycle that replaces fatty acids in PC molecules. The molecular profile of PC is determined by the genetic features that are characteristic for every species and depend on the environment. Here we present the results of ESI-MS based analyses of PC profiles of 38 species of basidiomycetes belonging to Agaricales (12), Polyporales (17), Russulales (5), Gleophyllales (2), Cantharellales (1), Auriculariales (1), Phallales (1). Although the variety of PC molecular species of basidiomycetes is rather diverse (20-38 molecular species in every profile), only 1-3 main molecular species represent 70-90% of total PC content. The most abundant of them are C36:4 and C36:3, followed by C34:1, C34:2, C36:5, C36:2. In the majority of basidiomycetes, C36:4 reaches up to 50-70% of total PC molecular species. Based on the results of hierarchical cluster analysis four main types of PC profiles which characterized the studied fungi independently from their taxonomic position, ecology, trophic status, and hyphal differentiation have been revealed. Comparative analyses of studied fungi using PCA method have shown that species of Polyporales differ from those of Agaricales by higher variability of PC profiles.

4.
Microorganisms ; 7(11)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694151

RESUMEN

Steccherinum ochraceum is a white rot basidiomycete with wide ecological amplitude. It occurs in different regions of Russia and throughout the world, occupying different climatic zones. S. ochraceum colonizes stumps, trunks, and branches of various deciduous (seldom coniferous) trees. As a secondary colonizing fungus, S. ochraceum is mainly observed at the late decay stages. Here, we present the de novo assembly and annotation of the genome of S. ochraceum, LE-BIN 3174. This is the 8th published genome of fungus from the residual polyporoid clade and the first from the Steccherinaceae family. The obtained genome provides a first glimpse into the genetic and enzymatic mechanisms governing adaptation of S. ochraceum to an ecological niche of pre-degraded wood. It is proposed that increased number of carbohydrate-active enzymes (CAZymes) belonging to the AA superfamily and decreased number of CAZymes belonging to the GH superfamily reflects substrate preferences of S. ochraceum. This proposition is further substantiated by the results of the biochemical plate tests and exoproteomic study, which demonstrates that S. ochraceum assumes the intermediate position between typical primary colonizing fungi and litter decomposers or humus saprotrophs. Phylogenetic analysis of S. ochraceum laccase and class II peroxidase genes revealed the distinct evolutional origin of these genes in the Steccherinaceae family.

5.
PLoS One ; 13(6): e0197667, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856762

RESUMEN

White-rot basidiomycetes from the poorly studied residual polyporoid clade of Polyporales order Junghuhnia nitida (Pers.) Ryvarden and Steccherinum bourdotii Saliba & A. David grow as secondary xylotrohps on well decomposed woody materials. The main objective of the current study was to compare oxidative potential, growth, production of oxidative enzymes and laccase properties of J. nitida and S. bourdotii with that of typical primary xylotrohps Trametes hirsuta (Wulfen) Lloyd and Coriolopsis caperata (Berk.) Murrill, belonging to the core polyporoid clade. For the first time we report species J. nitida and S. bourdotii as active laccase producers. New laccases from J. nitida and S. bourdotii were purified and characterized. They had an identical molecular weight of 63 kDa and isoelectric points of 3.4 and 3.1, respectively. However, the redox potential of the T1 copper site for both J. nitida (610 mV) and S. bourdotii (640 mV) laccases was lower than those for T. hirsuta and C. caperata laccases. The new laccases showed higher temperature optima and better thermal stability than T. hirsuta and C. caperata laccases. Their half-lives were more than 40 min at 70 °C. The laccases from J. nitida and S. bourdotii showed higher affinity to syringyl-type phenolic compounds than T. hirsuta and C. caperata laccases. The oxidative potential of studied fungi as well as the properties of their laccases are discussed in terms of the fungal life-style.


Asunto(s)
Basidiomycota/enzimología , Lacasa/química , Estrés Oxidativo/genética , Coriolaceae/enzimología , Estabilidad de Enzimas , Lacasa/genética , Lacasa/metabolismo , Oxidación-Reducción , Polyporales/enzimología , Temperatura , Trametes/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA