Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 390(1): 146-158, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772719

RESUMEN

Myocardial sarcoendoplasmic reticulum calcium ATPase 2 (SERCA2) activity is critical for heart function. We have demonstrated that inhaled halogen (chlorine or bromine) gases inactivate SERCA2, impair calcium homeostasis, increase proteolysis, and damage the myocardium ultimately leading to cardiac dysfunction. To further elucidate the mechanistic role of SERCA2 in halogen-induced myocardial damage, we used bromine-exposed cardiac-specific SERCA2 knockout (KO) mice [tamoxifen-administered SERCA2 (flox/flox) Tg (αMHC-MerCreMer) mice] and compared them to the oil-administered controls. We performed echocardiography and hemodynamic analysis to investigate cardiac function 24 hours after bromine (600 ppm for 30 minutes) exposure and measured cardiac injury markers in plasma and proteolytic activity in cardiac tissue and performed electron microscopy of the left ventricle (LV). Cardiac-specific SERCA2 knockout mice demonstrated enhanced toxicity to bromine. Bromine exposure increased ultrastructural damage, perturbed LV shape geometry, and demonstrated acutely increased phosphorylation of phospholamban in the KO mice. Bromine-exposed KO mice revealed significantly enhanced mean arterial pressure and sphericity index and decreased LV end diastolic diameter and LV end systolic pressure when compared with the bromine-exposed control FF mice. Strain analysis showed loss of synchronicity, evidenced by an irregular endocardial shape in systole and irregular vector orientation of contractile motion across different segments of the LV in KO mice, both at baseline and after bromine exposure. These studies underscore the critical role of myocardial SERCA2 in preserving cardiac ultrastructure and function during toxic halogen gas exposures. SIGNIFICANCE STATEMENT: Due to their increased industrial production and transportation, halogens such as chlorine and bromine pose an enhanced risk of exposure to the public. Our studies have demonstrated that inhalation of these halogens leads to the inactivation of cardiopulmonary SERCA2 and results in calcium overload. Using cardiac-specific SERCA2 KO mice, these studies further validated the role of SERCA2 in bromine-induced myocardial injury. These studies highlight the increased susceptibility of individuals with pathological loss of cardiac SERCA2 to the effects of bromine.


Asunto(s)
Bromo , Ratones Noqueados , Miocardio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Ratones , Miocardio/metabolismo , Miocardio/patología , Masculino , Ratones Endogámicos C57BL , Administración por Inhalación , Proteínas de Unión al Calcio
2.
Arch Toxicol ; 97(7): 1847-1858, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166470

RESUMEN

Arsenic trioxide (ATO), an inorganic arsenical, is a toxic environmental contaminant. It is also a widely used chemical with industrial and medicinal uses. Significant public health risk exists from its intentional or accidental exposure. The pulmonary pathology of acute high dose exposure is not well defined. We developed and characterized a murine model of a single inhaled exposure to ATO, which was evaluated 24 h post-exposure. ATO caused hypoxemia as demonstrated by arterial blood-gas measurements. ATO administration caused disruption of alveolar-capillary membrane as shown by increase in total protein and IgM in the bronchoalveolar lavage fluid (BALF) supernatant and an onset of pulmonary edema. BALF of ATO-exposed mice had increased HMGB1, a damage-associated molecular pattern (DAMP) molecule, and differential cell counts revealed increased neutrophils. BALF supernatant also showed an increase in protein levels of eotaxin/CCL-11 and MCP-3/CCL-7 and a reduction in IL-10, IL-19, IFN-γ, and IL-2. In the lung of ATO-exposed mice, increased protein levels of G-CSF, CXCL-5, and CCL-11 were noted. Increased mRNA levels of TNF-a, and CCL2 in ATO-challenged lungs further supported an inflammatory pathogenesis. Neutrophils were increased in the blood of ATO-exposed animals. Pulmonary function was also evaluated using flexiVent. Consistent with an acute lung injury phenotype, respiratory and lung elastance showed significant increase in ATO-exposed mice. PV loops showed a downward shift and a decrease in inspiratory capacity in the ATO mice. Flow-volume curves showed a decrease in FEV0.1 and FEF50. These results demonstrate that inhaled ATO leads to pulmonary damage and characteristic dysfunctions resembling ARDS in humans.


Asunto(s)
Lesión Pulmonar Aguda , Arsenicales , Humanos , Ratones , Animales , Modelos Animales de Enfermedad , Pulmón/patología , Líquido del Lavado Bronquioalveolar/química
3.
Toxicol Res (Camb) ; 10(5): 1064-1073, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34733491

RESUMEN

Accidental occupational bromine (Br>2>) exposures are common, leading to significant morbidity and mortality; however, the specific effects of Br>2> inhalation in female victims are unclear. Our studies demonstrated that acute high-concentration Br>2> inhalation is fatal, and cardiac injury and dysfunction play an important role in Br>2> toxicity in males. In this study, we exposed female Sprague Dawley rats, age-matched to those males from previously studied, to 600 ppm Br>2> for 45 min and assessed their survival, cardiopulmonary injury and cardiac function after exposure. Br>2> exposure caused serious mortality in female rats (59%) 48 h after exposure. Rats had severe clinical distress, reduced heart rates and oxygen saturation after Br>2> inhalation as was previously reported with male animals. There was significant lung injury and edema when measured 24 h after exposure. Cardiac injury biomarkers were also significantly elevated 24 h after Br>2> inhalation. Echocardiography and hemodynamic studies were also performed and revealed that the mean arterial pressure was not significantly elevated in females. Other functional cardiac parameters were also altered. Aside from the lack of elevation of blood pressure, all other changes observed in female animals were also present in male animals as reported in our previous study. These studies are important to understand the toxicity mechanisms to generate therapies and better-equip first responders to deal with these specific scenarios after bromine spill disasters.>.

4.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204780

RESUMEN

The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.


Asunto(s)
Conducta Animal , Tronco Encefálico/patología , Bromo/administración & dosificación , Bromo/efectos adversos , Neuronas/patología , Estrés Oxidativo , Administración por Inhalación , Animales , Biomarcadores/metabolismo , Lesiones Encefálicas/patología , Catecolaminas/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Metaboloma , Neuronas/efectos de los fármacos , Neurotransmisores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
5.
Arch Toxicol ; 95(1): 179-193, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979061

RESUMEN

Accidental bromine spills are common and its large industrial stores risk potential terrorist attacks. The mechanisms of bromine toxicity and effective therapeutic strategies are unknown. Our studies demonstrate that inhaled bromine causes deleterious cardiac manifestations. In this manuscript we describe mechanisms of delayed cardiac effects in the survivors of a single bromine exposure. Rats were exposed to bromine (600 ppm for 45 min) and the survivors were sacrificed at 14 or 28 days. Echocardiography, hemodynamic analysis, histology, transmission electron microscopy (TEM) and biochemical analysis of cardiac tissue were performed to assess functional, structural and molecular effects. Increases in right ventricular (RV) and left ventricular (LV) end-diastolic pressure and LV end-diastolic wall stress with increased LV fibrosis were observed. TEM images demonstrated myofibrillar loss, cytoskeletal breakdown and mitochondrial damage at both time points. Increases in cardiac troponin I (cTnI) and N-terminal pro brain natriuretic peptide (NT-proBNP) reflected myofibrillar damage and increased LV wall stress. LV shortening decreased as a function of increasing LV end-systolic wall stress and was accompanied by increased sarcoendoplasmic reticulum calcium ATPase (SERCA) inactivation and a striking dephosphorylation of phospholamban. NADPH oxidase 2 and protein phosphatase 1 were also increased. Increased circulating eosinophils and myocardial 4-hydroxynonenal content suggested increased oxidative stress as a key contributing factor to these effects. Thus, a continuous oxidative stress-induced chronic myocardial damage along with phospholamban dephosphorylation are critical for bromine-induced chronic cardiac dysfunction. These findings in our preclinical model will educate clinicians and public health personnel and provide important endpoints to evaluate therapies.


Asunto(s)
Bromo , Cardiomegalia/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Izquierda , Función Ventricular Derecha , Remodelación Ventricular , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotoxicidad , Diástole , Modelos Animales de Enfermedad , Fibrosis , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/metabolismo , Miocardio/ultraestructura , NADPH Oxidasa 2/metabolismo , Péptido Natriurético Encefálico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sístole , Factores de Tiempo , Troponina I/metabolismo , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Derecha/inducido químicamente , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/patología
6.
Ann N Y Acad Sci ; 1480(1): 104-115, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32645215

RESUMEN

The threat from deliberate or accidental exposure to halogen gases is increasing, as is their industrial applications and use as chemical warfare agents. Biomarkers that can identify halogen exposure, diagnose victims of exposure or predict injury severity, and enable appropriate treatment are lacking. We conducted these studies to determine and validate biomarkers of bromine (Br2 ) toxicity and correlate the symptoms and the extent of cardiopulmonary injuries. Unanesthetized rats were exposed to Br2 and monitored noninvasively for clinical scores and pulse oximetry. Animals were euthanized and grouped at various time intervals to assess brominated fatty acid (BFA) content in the plasma, lung, and heart using mass spectrometry. Bronchoalveolar lavage fluid (BALF) protein content was used to assess pulmonary injury. Cardiac troponin I (cTnI) was assessed in the plasma to evaluate cardiac injury. The blood, lung, and cardiac tissue BFA content significantly correlated with the clinical scores, tissue oxygenation, heart rate, and cardiopulmonary injury parameters. Total (free + esterified) bromostearic acid levels correlated with lung injury, as indicated by BALF protein content, and free bromostearic acid levels correlated with plasma cTnI levels. Thus, BFAs and cardiac injury biomarkers can identify Br2 exposure and predict the severity of organ damage.


Asunto(s)
Bromo/envenenamiento , Sustancias para la Guerra Química/envenenamiento , Ácidos Grasos/sangre , Hidrocarburos Bromados/sangre , Exposición por Inhalación/efectos adversos , Animales , Biomarcadores/sangre , Pulmón/metabolismo , Pulmón/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Troponina I/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...