Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol (Mosk) ; 56(6): 1014-1022, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-36475485

RESUMEN

Transactivation systems are a promising application based on the CRISPR/Cas9 system and allow targeted control of gene expression levels in cell culture. However, their performance has been reported to vary considerably depending on the cell type and the activator system. Three activator systems (dCas9-VP160, dCas9-SunTag, and dCas9-VPR) were compared for the efficiency of activating expression of OCT4, NANOG, PDX1, FOXA2, NKX2-2, and NKX6-1 in an immortalized human skin fibroblast line. The activation efficiency was found to depend on the activation system type; the extent of activation depended on the system run time.


Asunto(s)
Activación Transcripcional , Humanos
2.
Neurochem Res ; 47(4): 952-966, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34855047

RESUMEN

The study of human neurons and their interaction with neurochemicals is difficult due to the inability to collect primary biomaterial. However, recent advances in the cultivation of human stem cells, methods for their neuronal differentiation and chimeric fluorescent calcium indicators have allowed the creation of model systems in vitro. In this paper we report on the development of a method to obtain human neurons with the GCaMP6s calcium indicator, based on a human iPSC line with the TetON-NGN2 transgene complex. The protocol we developed allows us quickly, conveniently and efficiently obtain significant amounts of human neurons suitable for the study of various neurochemicals and their effects on specific neurophysiological activity, which can be easily registered using fluorescence microscopy. In the neurons we obtained, glutamate (Glu) induces rises in [Ca2+]i which are caused by ionotropic receptors for Glu, predominantly of the NMDA-type. Taken together, these facts allow us to consider the model we have created to be a useful and successful development of this technology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Calcio/metabolismo , Diferenciación Celular , Ácido Glutámico/metabolismo , Humanos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA