Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
Blood Adv ; 6(16): 4675-4690, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675517

RESUMEN

Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Linfoma de Células B Grandes Difuso/patología , Análisis Espacial , Microambiente Tumoral/genética
3.
Cancers (Basel) ; 13(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34298717

RESUMEN

To examine the extent of the evaluation required to achieve diagnostic resolution and the test performance characteristics of a targeted methylation cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test, ~6200 participants ≥50 years with (cohort A) or without (cohort B) ≥1 of 3 additional specific cancer risk factors will be enrolled in PATHFINDER (NCT04241796), a prospective, longitudinal, interventional, multi-center study. Plasma cfDNA from blood samples will be analyzed to detect abnormally methylated DNA associated with cancer (i.e., cancer "signal") and a cancer signal origin (i.e., tissue of origin). Participants with a "signal detected" will undergo further diagnostic evaluation per guiding physician discretion; those with a "signal not detected" will be advised to continue guideline-recommended screening. The primary objective will be to assess the number and types of subsequent diagnostic tests needed for diagnostic resolution. Based on microsimulations (using estimates of cancer incidence and dwell times) of the typical risk profiles of anticipated participants, the median (95% CI) number of participants with a "signal detected" result is expected to be 106 (87-128). Subsequent diagnostic evaluation is expected to detect 52 (39-67) cancers. The positive predictive value of the MCED test is expected to be 49% (39-58%). PATHFINDER will evaluate the integration of a cfDNA-based MCED test into existing clinical cancer diagnostic pathways. The study design of PATHFINDER is described here.

4.
Clin Cancer Res ; 27(15): 4221-4229, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34088722

RESUMEN

PURPOSE: We recently reported the development of a cell-free DNA (cfDNA) targeted methylation (TM)-based sequencing approach for a multi-cancer early detection (MCED) test that includes cancer signal origin prediction. Here, we evaluated the prognostic significance of cancer detection by the MCED test using longitudinal follow-up data. EXPERIMENTAL DESIGN: As part of a Circulating Cell-free Genome Atlas (CCGA) substudy, plasma cfDNA samples were sequenced using a TM approach, and machine learning classifiers predicted cancer status and cancer signal origin. Overall survival (OS) of cancer participants in the first 3 years of follow-up was evaluated in relation to cancer detection by the MCED test and clinical characteristics. RESULTS: Cancers not detected by the MCED test had significantly better OS (P < 0.0001) than cancers detected, even after accounting for other covariates, including clinical stage and method of clinical diagnosis (i.e., standard-of-care screening or clinical presentation with signs/symptoms). Additionally, cancers not detected by the MCED test had better OS than was expected when data were adjusted for age, stage, and cancer type from the Surveillance, Epidemiology, and End Results (SEER) program. In cancers with current screening options, the MCED test also differentiated more aggressive cancers from less aggressive cancers (P < 0.0001). CONCLUSIONS: Cancer detection by the MCED test was prognostic beyond clinical stage and method of diagnosis. Cancers not detected by the MCED test had better prognosis than cancers detected and SEER-based expected survival. Cancer detection and prognosis may be linked by the underlying biological factor of tumor fraction in cfDNA.


Asunto(s)
ADN Tumoral Circulante/sangre , Detección Precoz del Cáncer/métodos , Neoplasias/sangre , Anciano , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neoplasias/mortalidad , Pronóstico , Tasa de Supervivencia
5.
Nat Immunol ; 20(1): 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538335

RESUMEN

Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.


Asunto(s)
Linfocitos B/fisiología , Centro Germinal/patología , Histona Demetilasas/metabolismo , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Sistemas CRISPR-Cas , Carcinogénesis , ADN Intergénico/genética , Centro Germinal/inmunología , Histona Demetilasas/genética , Hiperplasia , Sinapsis Inmunológicas/genética , Intrones/genética , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-6/genética
6.
Cancer Discov ; 8(12): 1632-1653, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30274972

RESUMEN

TET2 somatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype. TET2 loss was linked to focal loss of enhancer hydroxymethylation and transcriptional repression of genes that mediate GC exit, such as PRDM1. Notably, these enhancers and genes are also repressed in CREBBP-mutant DLBCLs. Accordingly, TET2 mutation in patients yields a CREBBP-mutant gene-expression signature, CREBBP and TET2 mutations are generally mutually exclusive, and hydroxymethylation loss caused by TET2 deficiency impairs enhancer H3K27 acetylation. Hence, TET2 plays a critical role in the GC reaction, and its loss of function results in lymphomagenesis through failure to activate genes linked to GC exit signals. SIGNIFICANCE: We show that TET2 is required for exit of the GC, B-cell differentiation, and is a tumor suppressor for mature B cells. Loss of TET2 phenocopies CREBBP somatic mutation. These results advocate for sequencing TET2 in patients with lymphoma and for the testing of epigenetic therapies to treat these tumors.See related commentary by Shingleton and Dave, p. 1515.This article is highlighted in the In This Issue feature, p. 1494.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Células Plasmáticas/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética/genética , Perfilación de la Expresión Génica/métodos , Centro Germinal/patología , Células Madre Hematopoyéticas/metabolismo , Humanos , Hiperplasia , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones Noqueados , Ratones Transgénicos , Mutación , Células Plasmáticas/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
7.
Blood ; 132(7): e13-e23, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-29967128

RESUMEN

The biological role of extracellular vesicles (EVs) in diffuse large B-cell lymphoma (DLBCL) initiation and progression remains largely unknown. We characterized EVs secreted by 5 DLBCL cell lines, a primary DLBCL tumor, and a normal control B-cell sample, optimized their purification, and analyzed their content. We found that DLBCLs secreted large quantities of CD63, Alix, TSG101, and CD81 EVs, which can be extracted using an ultracentrifugation-based method and traced by their cell of origin surface markers. We also showed that tumor-derived EVs can be exchanged between lymphoma cells, normal tonsillar cells, and HK stromal cells. We then examined the content of EVs, focusing on isolation of high-quality total RNA. We sequenced the total RNA and analyzed the nature of RNA species, including coding and noncoding RNAs. We compared whole-cell and EV-derived RNA composition in benign and malignant B cells and discovered that transcripts from EVs were involved in many critical cellular functions. Finally, we performed mutational analysis and found that mutations detected in EVs exquisitely represented mutations in the cell of origin. These results enhance our understanding and enable future studies of the role that EVs may play in the pathogenesis of DLBCL, particularly with regards to the exchange of genomic information. Current findings open a new strategy for liquid biopsy approaches in disease monitoring.


Asunto(s)
Vesículas Extracelulares/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Proteínas de Neoplasias/genética , ARN Neoplásico/genética
8.
Blood ; 131(20): 2247-2255, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29615403

RESUMEN

Mantle cell lymphoma (MCL) is characterized by increased B-cell receptor (BCR) signaling, and BTK inhibition is an effective therapeutic intervention in MCL patients. The mechanisms leading to increased BCR signaling in MCL are poorly understood, as mutations in upstream regulators of BCR signaling such as CD79A, commonly observed in other lymphomas, are rare in MCL. The transcription factor SOX11 is overexpressed in the majority (78% to 93%) of MCL patients and is considered an MCL-specific oncogene. So far, attempts to understand SOX11 function in vivo have been hampered by the lack of appropriate animal models, because germline deletion of SOX11 is embryonically lethal. We have developed a transgenic mouse model (Eµ-SOX11-EGFP) in the C57BL/6 background expressing murine SOX11 and EGFP under the control of a B-cell-specific IgH-Eµ enhancer. The overexpression of SOX11 exclusively in B cells exhibits oligoclonal B-cell hyperplasia in the spleen, bone marrow, and peripheral blood, with an immunophenotype (CD5+CD19+CD23-) identical to human MCL. Furthermore, phosphocytometric time-of-flight analysis of the splenocytes from these mice shows hyperactivation of pBTK and other molecules in the BCR signaling pathway, and serial bone marrow transplant from transgenic donors produces lethality with decreasing latency. We report here that overexpression of SOX11 in B cells promotes BCR signaling and a disease phenotype that mimics human MCL.


Asunto(s)
Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Receptores de Antígenos de Linfocitos B/metabolismo , Factores de Transcripción SOXC/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores , Línea Celular Tumoral , Evolución Clonal , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cadenas Pesadas de Inmunoglobulina , Linfoma de Células del Manto/genética , Ratones , Ratones Transgénicos , Fenotipo , Factores de Transcripción SOXC/genética
9.
Nat Commun ; 9(1): 222, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335468

RESUMEN

Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases.


Asunto(s)
Citidina Desaminasa/genética , Epigénesis Genética , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Citidina Desaminasa/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación
10.
JCO Precis Oncol ; 20182018.
Artículo en Inglés | MEDLINE | ID: mdl-30706044

RESUMEN

PURPOSE: Multiple myeloma (MM) is a malignancy of plasma cells, with a median survival of 6 years. Despite recent therapeutic advancements, relapse remains mostly inevitable, and the disease is fatal in the majority of patients. A major challenge in the treatment of patients with relapsed MM is the timely identification of treatment options in a personalized manner. Current approaches in precision oncology aim at matching specific DNA mutations to drugs, but incorporation of genome-wide RNA profiles has not yet been clinically assessed. METHODS: We have developed a novel computational platform for precision medicine of relapsed and/or refractory MM on the basis of DNA and RNA sequencing. Our approach expands on the traditional DNA-based approaches by integrating somatic mutations and copy number alterations with RNA-based drug repurposing and pathway analysis. We tested our approach in a pilot precision medicine clinical trial with 64 patients with relapsed and/or refractory MM. RESULTS: We generated treatment recommendations in 63 of 64 patients. Twenty-six patients had treatment implemented, and 21 were assessable. Of these, 11 received a drug that was based on RNA findings, eight received a drug that was based on DNA, and two received a drug that was based on both RNA and DNA. Sixteen of the 21 evaluable patients had a clinical response (ie, reduction of disease marker ≥ 25%), giving a clinical benefit rate of 76% and an overall response rate of 66%, with five patients having ongoing responses at the end of the trial. The median duration of response was 131 days. CONCLUSION: Our results show that a comprehensive sequencing approach can identify viable options in patients with relapsed and/or refractory myeloma, and they represent proof of principle of how RNA sequencing can contribute beyond DNA mutation analysis to the development of a reliable drug recommendation tool.

11.
Curr Opin Hematol ; 24(4): 402-408, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28375986

RESUMEN

PURPOSE OF REVIEW: There is mounting evidence that heterogeneity of the epigenome is a feature of many cancers, including B-cell lymphomas, and presents important clinical implications. The purpose of this review is to explain the biological and clinical relevance of this epigenetic phenomenon in B-cell neoplasms. RECENT FINDINGS: Here, we summarize new findings demonstrating that B-cell lymphomas display increased DNA methylation heterogeneity compared to their normal counterparts. This plasticity of cytosine methylation manifests both as intertumor and intratumor heterogeneity and is associated with worse prognosis and poor clinical outcome in lymphoma patients. Recent studies of different subtypes of B-cell lymphomas have revealed that epigenetic aberrations and heterogeneous cytosine methylation patterning are common features of all neoplasms derived from B-lymphocytes, irrespective of maturation stage. With regard to mechanisms driving this process, recent reports suggest that cytosine methylation heterogeneity arises through passive and active processes. One factor implicated in active generation of cytosine methylation heterogeneity is activation-induced cytidine deaminase, which mediates DNA methylation changes and introduces epigenetic heterogeneity in normal germinal center B cells, the cells of origin of mature B-cell neoplasms such as diffuse large B-cell lymphoma and follicular lymphoma. SUMMARY: Understanding the scope and mechanism of epigenetic heterogeneity in cancer is of paramount importance to our understanding of clonal plasticity and treatment responses in B-cell lymphomas.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Leucemia de Células B/genética , Linfoma de Células B/genética , Animales , Metilación de ADN , Centro Germinal/metabolismo , Humanos , Leucemia de Células B/diagnóstico , Leucemia de Células B/metabolismo , Linfoma de Células B/diagnóstico , Linfoma de Células B/metabolismo , Transducción de Señal
12.
Cancer Discov ; 7(1): 38-53, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733359

RESUMEN

Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE: Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Proteína de Unión a CREB/genética , Centro Germinal/metabolismo , Histona Desacetilasas/genética , Linfoma de Células B Grandes Difuso/genética , Mutación , Acetilación , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Técnicas de Inactivación de Genes , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Trasplante de Neoplasias , Co-Represor 2 de Receptor Nuclear/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Transcripción Genética
13.
Cancer Cell ; 30(2): 197-213, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505670

RESUMEN

The EZH2 histone methyltransferase mediates the humoral immune response and drives lymphomagenesis through formation of bivalent chromatin domains at critical germinal center (GC) B cell promoters. Herein we show that the actions of EZH2 in driving GC formation and lymphoma precursor lesions require site-specific binding by the BCL6 transcriptional repressor and the presence of a non-canonical PRC1-BCOR-CBX8 complex. The chromodomain protein CBX8 is induced in GC B cells, binds to H3K27me3 at bivalent promoters, and is required for stable association of the complex and the resulting histone modifications. Moreover, oncogenic BCL6 and EZH2 cooperate to accelerate diffuse large B cell lymphoma (DLBCL) development and combinatorial targeting of these repressors results in enhanced anti-lymphoma activity in DLBCLs.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Represoras/metabolismo , Animales , Centro Germinal/patología , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética
14.
J Clin Invest ; 126(9): 3351-62, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27482887

RESUMEN

Diffuse large B cell lymphomas (DLBCLs) arise from proliferating B cells transiting different stages of the germinal center reaction. In activated B cell DLBCLs (ABC-DLBCLs), a class of DLBCLs that respond poorly to current therapies, chromosomal translocations and amplification lead to constitutive expression of the B cell lymphoma 6 (BCL6) oncogene. The role of BCL6 in maintaining these lymphomas has not been investigated. Here, we designed small-molecule inhibitors that display higher affinity for BCL6 than its endogenous corepressor ligands to evaluate their therapeutic efficacy for targeting ABC-DLBCL. We used an in silico drug design functional-group mapping approach called SILCS to create a specific BCL6 inhibitor called FX1 that has 10-fold greater potency than endogenous corepressors and binds an essential region of the BCL6 lateral groove. FX1 disrupted formation of the BCL6 repression complex, reactivated BCL6 target genes, and mimicked the phenotype of mice engineered to express BCL6 with corepressor binding site mutations. Low doses of FX1 induced regression of established tumors in mice bearing DLBCL xenografts. Furthermore, FX1 suppressed ABC-DLBCL cells in vitro and in vivo, as well as primary human ABC-DLBCL specimens ex vivo. These findings indicate that ABC-DLBCL is a BCL6-dependent disease that can be targeted by rationally designed inhibitors that exceed the binding affinity of natural BCL6 ligands.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Indoles/farmacología , Ligandos , Linfoma de Células B Grandes Difuso/patología , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones SCID , Trasplante de Neoplasias , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Tiazolidinedionas/farmacología , Translocación Genética
15.
Blood ; 127(23): 2856-66, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-26941399

RESUMEN

Distinct subgroups of diffuse large B-cell lymphoma (DLBCL) genetically resemble specific mature B-cell populations that are blocked at different stages of the immune response in germinal centers (GCs). The activated B-cell (ABC)-like subgroup resembles post-GC plasmablasts undergoing constitutive survival signaling, yet knowledge of the mechanisms that negatively regulate this oncogenic signaling remains incomplete. In this study, we report that microRNA (miR)-181a is a negative regulator of nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB) signaling. miR-181a overexpression significantly decreases the expression and activity of key NF-κB signaling components. Moreover, miR-181a decreases DLBCL tumor cell proliferation and survival, and anti-miR-181a abrogates these effects. Remarkably, these effects are augmented in the NF-κB dependent ABC-like subgroup compared with the GC B-cell (GCB)-like DLBCL subgroup. Concordantly, in vivo analyses of miR-181a induction in xenografts results in slower tumor growth rate and prolonged survival in the ABC-like DLBCL xenografts compared with the GCB-like DLBCL. We link these outcomes to relatively lower endogenous miR-181a expression and to NF-κB signaling dependency in the ABC-like DLBCL subgroup. Our findings indicate that miR-181a inhibits NF-κB activity, and that manipulation of miR-181a expression in the ABC-like DLBCL genetic background may result in a significant change in the proliferation and survival phenotype of this malignancy.


Asunto(s)
Transformación Celular Neoplásica/genética , Linfoma de Células B Grandes Difuso/genética , MicroARNs/fisiología , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Activación de Linfocitos/genética , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , FN-kappa B/metabolismo , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Clin Invest ; 125(12): 4559-71, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26529251

RESUMEN

Rationally designed combinations of targeted therapies for refractory cancers, such as activated B cell-like diffuse large B cell lymphoma (ABC DLBCL), are likely required to achieve potent, durable responses. Here, we used a pharmacoproteomics approach to map the interactome of a tumor-enriched isoform of HSP90 (teHSP90). Specifically, we chemically precipitated teHSP90-client complexes from DLBCL cell lines with the small molecule PU-H71 and found that components of the proximal B cell receptor (BCR) signalosome were enriched within teHSP90 complexes. Functional assays revealed that teHSP90 facilitates BCR signaling dynamics by enabling phosphorylation of key BCR signalosome components, including the kinases SYK and BTK. Consequently, treatment of BCR-dependent ABC DLBCL cells with PU-H71 attenuated BCR signaling, calcium flux, and NF-κB signaling, ultimately leading to growth arrest. Combined exposure of ABC DLBCL cell lines to PU-H71 and ibrutinib, a BCR pathway inhibitor, more potently suppressed BCR signaling than either drug alone. Correspondingly, PU-H71 combined with ibrutinib induced synergistic killing of lymphoma cell lines, primary human lymphoma specimens ex vivo, and lymphoma xenografts in vivo, without notable toxicity. Together, our results demonstrate that a pharmacoproteome-driven rational combination therapy has potential to provide more potent BCR-directed therapy for ABC DLCBL patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Benzodioxoles/farmacología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Piperidinas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteómica , Purinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Receptores de Antígenos de Linfocitos B/metabolismo , Quinasa Syk
17.
Cell Rep ; 12(12): 2086-98, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26365193

RESUMEN

Changes in DNA methylation are required for the formation of germinal centers (GCs), but the mechanisms of such changes are poorly understood. Activation-induced cytidine deaminase (AID) has been recently implicated in DNA demethylation through its deaminase activity coupled with DNA repair. We investigated the epigenetic function of AID in vivo in germinal center B cells (GCBs) isolated from wild-type (WT) and AID-deficient (Aicda(-/-)) mice. We determined that the transit of B cells through the GC is associated with marked locus-specific loss of methylation and increased methylation diversity, both of which are lost in Aicda(-/-) animals. Differentially methylated cytosines (DMCs) between GCBs and naive B cells (NBs) are enriched in genes that are targeted for somatic hypermutation (SHM) by AID, and these genes form networks required for B cell development and proliferation. Finally, we observed significant conservation of AID-dependent epigenetic reprogramming between mouse and human B cells.


Asunto(s)
Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , Epigénesis Genética , Centro Germinal/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Secuencia Conservada , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citosina/metabolismo , Metilación de ADN , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
18.
Nat Med ; 21(10): 1199-208, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26366710

RESUMEN

The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/fisiología , Linfoma de Células B/etiología , Proteínas de Neoplasias/fisiología , Animales , Linfocitos B/patología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Noqueados , Mutación , Proteínas de Neoplasias/genética
20.
Nucleic Acids Res ; 43(11): 5307-17, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25934800

RESUMEN

Cancer-associated somatic mutations outside protein-coding regions remain largely unexplored. Analyses of the TERT locus have indicated that non-coding regulatory mutations can be more frequent than previously suspected and play important roles in oncogenesis. Using a computational method called SASE-hunter, developed here, we identified a novel signature of accelerated somatic evolution (SASE) marked by a significant excess of somatic mutations localized in a genomic locus, and prioritized those loci that carried the signature in multiple cancer patients. Interestingly, even when an affected locus carried the signature in multiple individuals, the mutations contributing to SASE themselves were rarely recurrent at the base-pair resolution. In a pan-cancer analysis of 906 samples from 12 tumor types, we detected SASE in the promoters of several genes, including known cancer genes such as MYC, BCL2, RBM5 and WWOX. Nucleotide substitution patterns consistent with oxidative DNA damage and local somatic hypermutation appeared to contribute to this signature in selected gene promoters (e.g. MYC). SASEs in selected cancer gene promoters were associated with over-expression, and also correlated with the age of onset of cancer, aggressiveness of the disease and survival. Taken together, our work detects a hitherto under-appreciated and clinically important class of regulatory changes in cancer genomes.


Asunto(s)
Mutación , Neoplasias/genética , Regiones Promotoras Genéticas , Adulto , Expresión Génica , Genómica , Humanos , Persona de Mediana Edad , Neoplasias/diagnóstico , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...