Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1283613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033590

RESUMEN

Common bunt of wheat caused by Tilletia caries is an important disease worldwide. The T. caries TC1_MSG genome was sequenced using the Illumina HiSeq 2500 and Nanopore ONT platforms. The Nanopore library was prepared using the ligation sequencing kit SQK-LSK110 to generate approximately 24 GB for sequencing. The assembly size of 38.18 Mb was generated with a GC content of 56.10%. The whole genome shotgun project was deposited at DDBJ/ENA/GenBank under the accession number JALUTQ000000000. Forty-six contigs were obtained with N50 of 1,798,756 bp. In total, 10,698 genes were predicted in the assembled genome. Out of 10,698 genes, 10,255 genes were predicted significantly in the genome. The repeat sequences made up approximately 1.57% of the genome. Molecular function, cellular components, and biological processes for predicted genes were mapped into the genome. In addition, repeat elements in the genome were assessed. In all, 0.89% of retroelements were observed, followed by long terminal repeat elements (0.86%) in the genome. In simple sequence repeat (SSR) analysis, 8,582 SSRs were found in the genome assembly. The trinucleotide SSR type (3,703) was the most abundant. Few putative secretory signal peptides and pathogenicity-related genes were predicted. The genomic information of T. caries will be valuable in understanding the pathogenesis mechanism as well as developing new methods for the management of the common bunt disease of wheat.

2.
Front Microbiol ; 13: 852727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633675

RESUMEN

Tilletia indica is a quarantine fungal pathogen that poses a serious biosecurity threat to wheat-exporting countries. Acquiring genetic data for the pathogenicity characters of T. indica is still a challenge for wheat breeders and geneticists. In the current study, double digest restriction-site associated-DNA genotyping by sequencing was carried out for 39 T. indica isolates collected from different locations in India. The generated libraries upon sequencing were with 3,346,759 raw reads on average, and 151 x 2 nucleotides read length. The obtained bases per read ranged from 87 Mb in Ti 25 to 1,708 Mb in Ti 39, with 505 Mb on average per read. Trait association mapping was performed using 41,473 SNPs, infection phenotyping data, population structure, and Kinship matrix, to find single nucleotide polymorphisms (SNPs) linked to virulence genes. Population structure analysis divided the T. indica population in India into three subpopulations with genetic mixing in each subpopulation. However, the division was not in accordance with the degree of virulence. Trait association mapping revealed the presence of 13 SNPs associated with virulence. Using sequences analysis tools, one gene (g4132) near a significant SNP was predicted to be an effector, and its relative expression was assessed and found upregulated upon infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA