Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631296

RESUMEN

Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the hCMEC/D3 and SH-SY5Y cell lines as a model for the blood-brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (-24.30 mV to -31.20 mV). Stability studies implied that the nano-systems were stable in a physiologically relevant medium as well as human plasma, except nanoliposomes containing poloxamer on their surface, where there was an increase in particle size of ~26%. The presence of stealth polymer tends to decrease the amount of adsorbed proteins onto a particle's surface, according to protein adsorption studies. Both formulations of nanoliposomes were characterized by a low cytotoxicity, while their cell viability was reduced when incubated with the highest concentration (100 µg/mL) of nanostructured lipid formulations, which could have been associated with the consumption of cellular energy, thus resulting in a reduction in metabolic active cells. The uptake of all the nano-systems in the hCMEC/D3 and SH-SY5Y cell lines was successful, most likely following ATP-dependent internalization, as well as transport via passive diffusion.

2.
J Pharm Sci ; 111(12): 3384-3396, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36189477

RESUMEN

Taking into consideration the latest reported beneficial anticolvusant effects of cannabidiol (CBD) and cannabiodiolic acid (CBDA) for clinical applications and the advantages of lipid nano-systems as carriers for targeted brain delivery, the aim of this study was set in direction of in vitro physico-chemical and biopharmaceutical characterization and in vivo evaluation of nanoliposomes and nanostructured lipid carriers loaded with Cannabis sativa extract intended for safe and efficient transport via blood-brain barrier and treatment of epilepsy. These nanoliposomes and nanostructured lipid formulations were characterized with z-average diameter <200 nm, following unimodal particle size distribution, negative values for Z-potential, high drug encapsulation efficiency and prolonged release during 24h (38.84-60.91 %). Prepared formulations showed statistically significant higher antioxidant capacity compared to the extract. The results from in vivo studies of the anticonvulsant activity demonstrated that all formulations significantly elevated the latencies for myoclonic, clonic and tonic seizures and, therefore, could be used in preventing different types of seizures. A distinction in the potential of the nano-systems was noted, which was probably anticipated by the type and the characteristics of the prepared formulations.


Asunto(s)
Cannabis , Epilepsia , Tamaño de la Partícula , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Lípidos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
J Biomed Mater Res B Appl Biomater ; 110(6): 1368-1390, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35019231

RESUMEN

Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 µm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.


Asunto(s)
Enfermedad de Alzheimer , Nanoestructuras , Salvia officinalis , Enfermedad de Alzheimer/tratamiento farmacológico , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Tamaño de la Partícula , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA