Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 558: 441, 2019 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-30765106

RESUMEN

Exosomes are biological nano-sized vesicles (~30-200 nm in diameter) that are produced by a wide range of cells and play several roles in cell-cell communications. These vesicles contain membrane and cytoplasmic components of producing cells. Mesenchymal stem cells (MSCs) are the ideal producer of exosomes. The secreted vesicles from MSCs are promising biological vehicles for cell-free therapy in regenerative medicine, cancer therapy and targeted delivery of therapeutic agents to the tumor cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising member of the TNF family with selective effect on cancerous cells. Recent evidences showed that the membrane TRAIL-armed exosomes possess anti-tumor activity. However, the effect of in vivo administration of TRAIL-armed exosomes has not been reported so far. In the current study, mesenchymal stem cells expressing TRAIL/GFP proteins were prepared with the help of a non-viral vector based on polyethylenimine 25 kDa. Then, exosomes containing TRAIL protein (Exo-TRAIL) were isolated from the supernatant of genetically engineered MSCs and characterized. Antitumor activity of both MSC-derived exosomes and Exo-TRAIL was investigated in vitro and in vivo in three models. The results indicated that the co-injection of both Exo-TRAIL and tumor cells delayed the tumor appearance. Besides, the tumor volume/weight was efficiently decreased in tumor bearing mice. Moreover, it was shown that multi-dose injections of Exo-TRAIL reduced the tumor size while single dose treatment with Exo-TRAIL did not show significant anti-tumor activity. To conclude, these results suggested that MSC-derived Exo-TRAIL has a potential capacity for cancer treatment.

2.
Mater Sci Eng C Mater Biol Appl ; 92: 892-901, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184819

RESUMEN

A new strategy is reported for the synthesis of label-free fluorescent mesoporous silica (MS) by the introduction of fluorescent carbon dots in the MSs (MSCDs) in this work. Etoposide (ETO) loaded MSCDs have been used as a drug model. Carboxymethyl ß-cyclodextrin (CßCD) used as a gatekeeper agent was attached to amine-functionalized MSCDs to retain ETO molecules inside the nanocarrier. In order to target the nanocarrier to the site of action, folic acid (FA) was grafted onto the MSCDs surface (FA-CßCD-MSCDs). The in vitro release of an entrapped ETO from the formulation in phosphate buffered saline (PBS) (pH 7.4) and citrate buffer (pH 5.4) was investigated. At neutral pH in PBS, the pores are blocked by CßCD which prevent premature ETO release. However, under the weakly acidic intercellular environment of the tumor, the amide bond can be partially hydrolyzed and consequently lead to the ETO release from the nanocarrier. The targeted and ETO-loaded FA-CßCD-MSCDs showed a higher growth inhibition towards FA-positive HeLa cells compared with FA-negative HepG2 cells, as demonstrated by comparison of in vitro cytotoxicity experiments. In addition, the CDs emission was used for the fluorescent microscopic imaging. Moreover, molecular docking and molecular dynamics simulations (MDS) were applied to examine the interactions of ETO molecules with the topoisomerase II (Top II). ETO molecules bind Top II with overall binding constants of 3.08 × 1010 M-1, according to docking results. Based on MDS results, ETO-Top II complex is formed through hydrophobic interactions.


Asunto(s)
Carbono/química , Etopósido/química , Ácido Fólico/química , Dióxido de Silicio/química , beta-Ciclodextrinas/química , Sistemas de Liberación de Medicamentos/métodos , Células HeLa , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Nanopartículas/química
3.
Int J Pharm ; 549(1-2): 218-229, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30075248

RESUMEN

Exosomes are biological nano-sized vesicles (~30-200 nm in diameter) that are produced by a wide range of cells and play several roles in cell-cell communications. These vesicles contain membrane and cytoplasmic components of producing cells. Mesenchymal stem cells (MSCs) are the ideal producer of exosomes. The secreted vesicles from MSCs are promising biological vehicles for cell-free therapy in regenerative medicine, cancer therapy and targeted delivery of therapeutic agents to the tumor cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising member of the TNF family with selective effect on cancerous cells. Recent evidences showed that the membrane TRAIL-armed exosomes possess anti-tumor activity. However, the effect of in vivo administration of TRAIL-armed exosomes has not been reported so far. In the current study, mesenchymal stem cells expressing TRAIL/GFP proteins were prepared with the help of a non-viral vector based on polyethylenimine 25 kDa. Then, exosomes containing TRAIL protein (Exo-TRAIL) were isolated from the supernatant of genetically engineered MSCs and characterized. Antitumor activity of both MSC-derived exosomes and Exo-TRAIL was investigated in vitro and in vivo in three models. The results indicated that the co-injection of both Exo-TRAIL and tumor cells delayed the tumor appearance. Besides, the tumor volume/weight was efficiently decreased in tumor bearing mice. Moreover, it was shown that multi-dose injections of Exo-TRAIL reduced the tumor size while single dose treatment with Exo-TRAIL did not show significant anti-tumor activity. To conclude, these results suggested that MSC-derived Exo-TRAIL has a potential capacity for cancer treatment. [corrected].


Asunto(s)
Exosomas/genética , Melanoma/terapia , Células Madre Mesenquimatosas/citología , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Ingeniería Genética/métodos , Humanos , Melanoma/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacocinética , Distribución Tisular , Transfección , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA