Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 359: 142303, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734250

RESUMEN

The world is facing water crises because freshwater scarcity has become a global issue due to rapid population growth, resulting in the need for more industries, agriculture, and domestic sectors. Therefore, it is challenging for scientists and environmental engineers to treat wastewater with cost-effective treatment techniques. As compared to conventional processes (physical, chemical, and biological), advanced oxidation processes (AOP) play an essential role in the removal of wastewater contaminants, with the help of a powerful hydroxyl (OH•) through oxidation reactions. This review study investigates the critical role of O3-based Advanced Oxidation Processes (AOPs) in tackling the complex difficulties of wastewater treatment. Effective treatment methods are critical, with wastewater originating from various sources, including industrial activity, pharmaceutical manufacturing, agriculture, and a wide range of toxins. O3-based AOPs appear to be powerful therapies capable of degrading a wide range of pollutants, including stubborn organics, medicines, and pesticides, reducing environmental and human health risks. This review sheds light on their efficacy in wastewater treatment by explaining the underlying reaction mechanisms and applications of several O3-based AOP processes, such as O3, O3/UV, and O3/H2O2. Ozone, a powerful oxidizing agent, stimulates the breakdown of complex chemical molecules by oxidation processes, which are aided further by synergistic combinations with ultraviolet (UV) radiation or hydrogen peroxide (H2O2). Notably, while ozonation alone may not always produce the best outcomes, it acts as an essential pretreatment step prior to traditional treatments, increasing total treatment efficiency. Furthermore, O3-based AOPs' transformational capacity to convert organic chemicals into simpler, more stable inorganic forms with little sludge creation emphasizes its sustainability and environmental benefits. This study sheds light on the processes, uses, and benefits of O3-based AOPs, presenting practical solutions for sustainable water management and environmental protection. It is a valuable resource for academics, engineers, and politicians looking for new ways to combat wastewater contamination and protect water resources.


Asunto(s)
Oxidación-Reducción , Ozono , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Ozono/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno/química , Purificación del Agua/métodos , Rayos Ultravioleta
2.
Chemosphere ; 344: 140264, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37758081

RESUMEN

Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Aguas Residuales
3.
J Chromatogr Sci ; 60(2): 194-200, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33948643

RESUMEN

An effectual and stability signifying technique has been validated for the quantitative verification of degradation products in Remdesivir Injectable pharmaceutical products by employing high-performance liquid chromatography with ultraviolet detector. The process was optimized by using an octyldecylsilane chemically bonded column (Kromasil KR100-5 C18; USP L1 phase) with dimensions; 250 mm length × 4.5 mm inner diameter and 5-µm particle size. The method was validated as per International Conference on Harmonization and other current regulatory guidelines for analytical method validation. The anticipated process was found to be robust, accurate, specific, linear, precise, stable and rugged in the concentration ranging from quantification level to 200% of the specification level of specified and unknown degradation impurities. The technique was effectively applied to analyze degradation products in Remdesivir Injectable drug products.


Asunto(s)
Contaminación de Medicamentos , Preparaciones Farmacéuticas , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...