Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3116, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813818

RESUMEN

CRISPR-mediated integration could be used to develop the recombinant CHO (rCHO) cells by knock-in into the hotspot loci. However, low HDR efficiency besides the complex donor design is the main barrier for achieving so. The recently introduced MMEJ-mediated CRISPR system (CRIS-PITCh) uses a donor with short homology arms, being linearized in the cells via two sgRNAs. In this paper, a new approach to improve CRIS-PITCh knock-in efficiency by employing small molecules was investigated. Two small molecules, B02, a Rad51 inhibitor, and Nocodazole, a G2/M cell cycle synchronizer, were used to target the S100A hotspot site using a bxb1 recombinase comprised landing pad in CHO-K1 cells. Following transfection, the CHO-K1 cells were treated with the optimum concentration of one or combination of small molecules, being determined by the cell viability or flow cytometric cell cycle assay. Stable cell lines were generated and the single-cell clones were achieved by the clonal selection procedure. The finding showed that B02 improved the PITCh-mediated integration approximately twofold. In the case of Nocodazole treatment, the improvement was even more significant, up to 2.4-fold. However, the combinatorial effects of both molecules were not substantial. Moreover, according to the copy number and out-out PCR analyses, 5 and 6 of 20 clonal cells exhibited mono-allelic integration in Nocodazole and B02 groups, respectively. The results of the present study as the first attempt to enhance the CHO platform generation by exploiting two small molecules in the CRIS-PITCh system could be used in future researches to establish rCHO clones.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN , Cricetinae , Animales , Nocodazol , Células CHO , Cricetulus
2.
Biochim Biophys Acta Biomembr ; 1863(12): 183770, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517002

RESUMEN

This paper describes a simple strategy for covalent immobilization of the NHS-PEG-RGD peptide with the three different PEG lengths (8, 13, and 22) onto the amine-terminated monolayers with the subsequent investigation of fibroblast cellular response to the three derivatives of pegylated RGD peptides-modified substrates. First, acetamide-terminated monolayers were prepared on the hydride terminated silicon surface to protect NH2-terminated monolayers. This was followed by the removal of the protective groups, and the reaction of NHS-PEG8-RGD, NHS-PEG13-RGD and NHS-PEG22-RGD peptides with the NH2-terminated monolayers while reducing nonspecific protein adsorption. Analysis of X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared (ATR-FTIR) spectroscopy, and Ellipsometry measurements demonstrated that PEG13-RGD peptide forms relatively a more homogenous, thicker and stable structure compared with those of PEG8-RGD and PEG22-RGD peptide. The quantitative and qualitative assessment of cell adhesion, spreading, and proliferation indicated that relatively further elongated fibroblast cells attached on the PEG13-RGD peptide relative to those on the PEG8-RGD and PEG22-RGD peptide. The results presented here may offer a developed strategy based on the length of the spacer to regulate cellular behavior on the surface substrates.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Oligopéptidos/química , Humanos , Oligopéptidos/farmacología , Polietilenglicoles/química , Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
3.
Saudi Pharm J ; 28(11): 1392-1401, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33250646

RESUMEN

In this paper, Doxil coupled with anti-CD133 monoclonal antibodies made by either routine or optimized post-insertion technique, were compared with respect to their size, drug leakage, release pattern and the number of antibodies conjugated per single liposome. The results demonstrated that the number of antibodies conjugated per liposome in the optimized post-insertion technique was almost two times more than those in the routine post-insertion method. However, the drug release and leakage pattern was almost similar between the two methods. Furthermore, anti-tumor activity and therapeutic efficacy of the preferred CD133-targeted Doxil with Doxil was compared in terms of their in vitro binding, uptake, internalization and cytotoxicity against HT-29 (CD133+) and CHO (CD133-) cells. Flow cytometry analyses and confocal laser scanning microscopy results exhibited a significantly higher cellular uptake, binding and internalization of CD133-targeted Doxil in CD+133 cells relative to Doxil. Cytotoxicity results revealed a lower in vitro inhibitory concentration for CD133-targeted Doxil compared to Doxil. However, CHO (CD133-) cells displayed a similar uptake and in vitro cytotoxicity for both CD133-Doxil and non-targeted Doxil. Therefore, the results of this study can exhibit that specific recognition and binding of antibodies with CD133 receptors on HT-29 cells can result in enhanced cellular uptake, internalization and cytotoxicity. The research suggests further investigation for in vivo studies and may offer proof-of-principle for an active targeting concept.

4.
Colloids Surf B Biointerfaces ; 145: 470-478, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27236098

RESUMEN

We described a modification of the ionic (RADARADARADARADA)(1) peptide or RADA16-I with 4-azidophenyl isothiocyanate via a specific and gentle reaction. The azidated peptide was covalently immobilized on an alkyne-terminated monolayer on Si(111) via the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. Detailed characterization using Impedance spectroscopy (IS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy demonstrated high coverage of the RADA 16-I peptide on silicon surfaces. Scanning electron microscopy (SEM) and methyl tetrazole sulfate (MTS) assay were used to characterize the morphology and proliferation ability of human fibroblast cells on surfaces. Cell adhesion assay was performed to examine cell-substrate interactions. Significant differences in fibroblast cell morphology, adhesion, and viability were observed on the RADA16-I peptide modified surfaces compared to the control surfaces. These results may suggest a potential application of RADA16-I peptide modified surfaces in biomedical applications.


Asunto(s)
Péptidos/química , Silicio/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Humanos , Microscopía Electrónica de Rastreo , Péptidos/farmacología , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...