Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38279762

RESUMEN

BACKGROUND: Involvement of gastrointestinal inflammation in Parkinson's disease (PD) pathogenesis and movement have progressively emerged. Inflammation is involved in the etiology of both PD and inflammatory bowel disease (IBD). Transformations in leucine-rich recurrent kinase 2 (LRRK2) are among the best hereditary supporters of IBD and PD. Elevated levels of LRRK2 have been reported in stimulated colonic tissue from IBD patients and peripheral invulnerable cells from irregular PD patients; thus, it is thought that LRRK2 directs inflammatory cycles. OBJECTIVE: Since its revelation, LRRK2 has been seriously linked in neurons, albeit various lines of proof affirmed that LRRK2 is profoundly communicated in invulnerable cells. Subsequently, LRRK2 might sit at a junction by which stomach inflammation and higher LRRK2 levels in IBD might be a biomarker of expanded risk for inconsistent PD or potentially may address a manageable helpful objective in incendiary sicknesses that increment the risk of PD. Here, we discuss how PD and IBD share covering aggregates, especially regarding LRRK2 and present inhibitors, which could be a helpful objective in ongoing treatments. METHOD: English data were obtained from Google Scholar, PubMed, Scopus, and Cochrane library studies published between 1990-December 2022. RESULT: Inhibitors of the LRRK2 pathway can be considered as the novel treatment approaches for IBD and PD treatment. CONCLUSION: Common mediators and pathways are involved in the pathophysiology of IBD and PD, which are majorly correlated with inflammatory situations. Such diseases could be used for further clinical investigations.

2.
Can J Physiol Pharmacol ; 102(3): 150-160, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955633

RESUMEN

The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.


Asunto(s)
Esquizofrenia , Humanos , Aspirina , Citocinas , Interleucina-6 , Esquizofrenia/tratamiento farmacológico , Transducción de Señal , Serina-Treonina Quinasas TOR
3.
Curr Med Chem ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817661

RESUMEN

The natural polyphenol, calebin-A, was recently discovered and identified as a novel phytopharmaceutical with anti-inflammatory, anti-tumor, and antiproliferative properties. Calebin-A occurs naturally in trace quantities in Curcuma longa/C cassia, commonly known as turmeric, from the Zingiberaceae family. Calebin-A is a curcumin analog or 'chemical cousin' of curcumin with a similar chemical structure. Although few research studies have been conducted on the pharmacological and therapeutic properties of calebin-A, it is a very promising molecule with a variety of pharmacological properties. Some studies have suggested that calebin-A is helpful in treating various cancers due to its inhibitory effect on cell growth and anti-inflammatory properties. Other studies have suggested that calebin-A may improve neurocognitive status associated with neurodegeneration caused by Alzheimer's disease (AD) by inhibiting the aggregation of ß-amyloid. Finally, several studies have proposed that calebin-A may potentially be therapeutically beneficial in treating patients with obesity. This novel compound downregulates nuclear factor (NF)-κB-mediated processes involved with cancer, such as tumor cell invasion, proliferation, metastasis, and, most profoundly, inflammation. Moreover, calebin-A influences the activities of mitogen-activated protein kinases (MAPKs) in cancer cells. The present review identifies and discusses the pharmacological and phytochemical properties of calebin-A, as well as its therapeutic benefits and limitations, for future scientists and clinicians interested in exploring calebin-A's medicinal qualities.

4.
Cell Biochem Biophys ; 81(4): 599-613, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658280

RESUMEN

Diabetes affects millions of people worldwide and is mainly associated with impaired insulin function. To date, various oral anti-diabetic drugs have been developed, of which, the sodium glucose transporter-2 inhibitors (SGLT2Is) are of the most recent classes that have been introduced. They differ from other classes in terms of their novel mechanism of actions and unique beneficial effects rather than just lowering glucose levels. SGLT2Is can protect body against cardiovascular events and kidney diseases even in non-diabetic individuals. SGLT2Is participate in immune cell activation, oxidative stress reduction, and inflammation mediation, thereby, moderating diabetic complications. In addition, toll like receptors (TLRs) are the intermediators of the immune system and inflammatory process, thus it's believed to play crucial roles in diabetic complications, particularly the ones that are related to inflammatory reactions. SGLT2Is are also effective against diabetic complications via their anti-inflammatory and oxidative properties. Given the anti-inflammatory properties of TLRs and SGLT2Is, this review investigates how SGLT2Is can affect the TLR pathway, and whether this could be favorable toward diabetes.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Complicaciones de la Diabetes/complicaciones , Antiinflamatorios , Proteínas de Transporte de Sodio-Glucosa/uso terapéutico , Glucosa , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
5.
Inflammopharmacology ; 31(5): 2201-2212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37498375

RESUMEN

Curcumin (diferuloylmethane) is a herbal remedy which possesses numerous biological attributes including anti-inflammatory, anti-oxidant and anti-cancer properties. Curcumin has been shown to impact a number of signaling pathways including nuclear factor kappa B (NF-KB), reactive oxygen species (ROS), Wingless/Integrated (Wnt), Janus kinase-signal transducer and activator of mitogen-activated protein kinase (MAPK) and transcription (JAK/STAT). P38 belongs to the MAPKs, is known as a stress-activated MAPK and is involved in diverse biological responses. P38 is activated in various signaling cascades. P38 plays a role in inflammation, cell differentiation, proliferation, motility and survival. This cascade can serve as a therapeutic target in many disorders. Extensive evidence confirms that curcumin impacts the P38 MAPK signaling pathway, through which it exerts anti-inflammatory, neuroprotective, and apoptotic effects. Hence, curcumin can positively affect inflammatory disorders and cancers, as well as to increase glucose uptake in cells. This review discusses the pharmacological and therapeutic effects of curcumin as effected through p38 MAPK.


Asunto(s)
Curcumina , Curcumina/farmacología , Curcumina/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Quinasas Janus/metabolismo , Sistema de Señalización de MAP Quinasas
6.
Adv Exp Med Biol ; 1412: 457-476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378783

RESUMEN

The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.


Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Inflamación/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Interleucina-6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...