Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1289555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313797

RESUMEN

Background: The novel International Association for the Study of Lung Cancer (IASLC) grading system suggests that poorly differentiated invasive pulmonary adenocarcinoma (IPA) has a worse prognosis. Therefore, prediction of poorly differentiated IPA before treatment can provide an essential reference for therapeutic modality and personalized follow-up strategy. This study intended to train a nomogram based on CT intratumoral and peritumoral radiomics features combined with clinical semantic features, which predicted poorly differentiated IPA and was tested in independent data cohorts regarding models' generalization ability. Methods: We retrospectively recruited 480 patients with IPA appearing as subsolid or solid lesions, confirmed by surgical pathology from two medical centers and collected their CT images and clinical information. Patients from the first center (n =363) were randomly assigned to the development cohort (n = 254) and internal testing cohort (n = 109) in a 7:3 ratio; patients (n = 117) from the second center served as the external testing cohort. Feature selection was performed by univariate analysis, multivariate analysis, Spearman correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the model performance. Results: The AUCs of the combined model based on intratumoral and peritumoral radiomics signatures in internal testing cohort and external testing cohort were 0.906 and 0.886, respectively. The AUCs of the nomogram that integrated clinical semantic features and combined radiomics signatures in internal testing cohort and external testing cohort were 0.921 and 0.887, respectively. The Delong test showed that the AUCs of the nomogram were significantly higher than that of the clinical semantic model in both the internal testing cohort(0.921 vs 0.789, p< 0.05) and external testing cohort(0.887 vs 0.829, p< 0.05). Conclusion: The nomogram based on CT intratumoral and peritumoral radiomics signatures with clinical semantic features has the potential to predict poorly differentiated IPA manifesting as subsolid or solid lesions preoperatively.

2.
Front Cell Infect Microbiol ; 13: 1267941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822356

RESUMEN

Pasteurella multocida is an opportunistic pathogen. Previously reported infections associated with P. multocida have often been linked to contact with cats, dogs, and other animals. Cases of systemic multiple-site infections following P. multocida infection are rare. This case study presents a 49-year-old middle-aged man with post-hepatitis B cirrhosis and no history of animal contact. The patient was admitted with symptoms of fever accompanied by diarrhea, abdominal distension, and cough. Blood tests showed elevated levels of CRP, PCT, and IL-6, and blood culture revealed the growth of P. multocida. CT scans revealed a large amount of abdominal effusion, a small amount of pleural effusion, and pulmonary infection foci. The patient's condition improved after successive administration of ceftriaxone and levofloxacin to fight the infection, and abdominal puncture and drainage. Multiple-site infections caused by P. multocida are rarely encountered in patients with liver cirrhosis but without animal contact, which could be regarded as serious conditions warranting careful attention in terms of clinical diagnosis and treatment.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Pasteurella , Pasteurella multocida , Peritonitis , Neumonía , Sepsis , Masculino , Persona de Mediana Edad , Humanos , Animales , Gatos , Perros , Infecciones por Pasteurella/complicaciones , Infecciones por Pasteurella/diagnóstico , Infecciones por Pasteurella/tratamiento farmacológico , Cirrosis Hepática/complicaciones , Sepsis/complicaciones , Neumonía/complicaciones
3.
Cancer Med ; 12(18): 18460-18469, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37723872

RESUMEN

BACKGROUND: The surgical approach and prognosis for invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA) of the lung differ. However, they both manifest as identical ground-glass nodules (GGNs) in computed tomography images, and no effective method exists to discriminate them. METHODS: We developed and validated a three-dimensional (3D) deep transfer learning model to discriminate IAC from MIA based on CT images of GGNs. This model uses a 3D medical image pre-training model (MedicalNet) and a fusion model to build a classification network. Transfer learning was utilized for end-to-end predictive modeling of the cohort data of the first center, and the cohort data of the other two centers were used as independent external validation data. This study included 999 lung GGN images of 921 patients pathologically diagnosed with IAC or MIA at three cohort centers. RESULTS: The predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). The model had high diagnostic efficacy for the training and validation groups (accuracy: 89%, sensitivity: 95%, specificity: 84%, and AUC: 95% in the training group; accuracy: 88%, sensitivity: 84%, specificity: 93%, and AUC: 92% in the internal validation group; accuracy: 83%, sensitivity: 83%, specificity: 83%, and AUC: 89% in one external validation group; accuracy: 78%, sensitivity: 80%, specificity: 77%, and AUC: 82% in the other external validation group). CONCLUSIONS: Our 3D deep transfer learning model provides a noninvasive, low-cost, rapid, and reproducible method for preoperative prediction of IAC and MIA in lung cancer patients with GGNs. It can help clinicians to choose the optimal surgical strategy and improve the prognosis of patients.

4.
Front Oncol ; 13: 1078863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890815

RESUMEN

Background: This study aimed to establish an effective model for preoperative prediction of tumor deposits (TDs) in patients with rectal cancer (RC). Methods: In 500 patients, radiomic features were extracted from magnetic resonance imaging (MRI) using modalities such as high-resolution T2-weighted (HRT2) imaging and diffusion-weighted imaging (DWI). Machine learning (ML)-based and deep learning (DL)-based radiomic models were developed and integrated with clinical characteristics for TD prediction. The performance of the models was assessed using the area under the curve (AUC) over five-fold cross-validation. Results: A total of 564 radiomic features that quantified the intensity, shape, orientation, and texture of the tumor were extracted for each patient. The HRT2-ML, DWI-ML, Merged-ML, HRT2-DL, DWI-DL, and Merged-DL models demonstrated AUCs of 0.62 ± 0.02, 0.64 ± 0.08, 0.69 ± 0.04, 0.57 ± 0.06, 0.68 ± 0.03, and 0.59 ± 0.04, respectively. The clinical-ML, clinical-HRT2-ML, clinical-DWI-ML, clinical-Merged-ML, clinical-DL, clinical-HRT2-DL, clinical-DWI-DL, and clinical-Merged-DL models demonstrated AUCs of 0.81 ± 0.06, 0.79 ± 0.02, 0.81 ± 0.02, 0.83 ± 0.01, 0.81 ± 0.04, 0.83 ± 0.04, 0.90 ± 0.04, and 0.83 ± 0.05, respectively. The clinical-DWI-DL model achieved the best predictive performance (accuracy 0.84 ± 0.05, sensitivity 0.94 ± 0. 13, specificity 0.79 ± 0.04). Conclusions: A comprehensive model combining MRI radiomic features and clinical characteristics achieved promising performance in TD prediction for RC patients. This approach has the potential to assist clinicians in preoperative stage evaluation and personalized treatment of RC patients.

5.
Front Oncol ; 12: 872503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646675

RESUMEN

Purpose: To establish and verify the ability of a radiomics prediction model to distinguish invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs). Methods: We retrospectively analyzed 118 lung GGN images and clinical data from 106 patients in our hospital from March 2016 to April 2019. All pathological classifications of lung GGN were confirmed as IAC or MIA by two pathologists. R language software (version 3.5.1) was used for the statistical analysis of the general clinical data. ITK-SNAP (version 3.6) and A.K. software (Analysis Kit, American GE Company) were used to manually outline the regions of interest of lung GGNs and collect three-dimensional radiomics features. Patients were randomly divided into training and verification groups (ratio, 7:3). Random forest combined with hyperparameter tuning was used for feature selection and prediction modeling. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate model prediction efficacy. The calibration curve was used to evaluate the calibration effect. Results: There was no significant difference between IAC and MIA in terms of age, gender, smoking history, tumor history, and lung GGN location in both the training and verification groups (P>0.05). For each lung GGN, the collected data included 396 three-dimensional radiomics features in six categories. Based on the training cohort, nine optimal radiomics features in three categories were finally screened out, and a prediction model was established. We found that the training group had a high diagnostic efficacy [accuracy, sensitivity, specificity, and AUC of the training group were 0.89 (95%CI, 0.73 - 0.99), 0.98 (95%CI, 0.78 - 1.00), 0.81 (95%CI, 0.59 - 1.00), and 0.97 (95%CI, 0.92-1.00), respectively; those of the validation group were 0.80 (95%CI, 0.58 - 0.93), 0.82 (95%CI, 0.55 - 1.00), 0.78 (95%CI, 0.57 - 1.00), and 0.92 (95%CI, 0.83 - 1.00), respectively]. The model calibration curve showed good consistency between the predicted and actual probabilities. Conclusions: The radiomics prediction model established by combining random forest with hyperparameter tuning effectively distinguished IAC from MIA presenting as GGNs and represents a noninvasive, low-cost, rapid, and reproducible preoperative prediction method for clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...