Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clin Oral Implants Res ; 35(5): 467-486, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450852

RESUMEN

OBJECTIVE: Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS: Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS: Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION: A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.


Asunto(s)
Pérdida de Hueso Alveolar , Regeneración Ósea , Modelos Animales de Enfermedad , Animales , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Porcinos , Alveolo Dental/patología , Alveolo Dental/diagnóstico por imagen , Cicatrización de Heridas/fisiología
2.
Stem Cell Res Ther ; 15(1): 33, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321490

RESUMEN

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Ratas , Masculino , Animales , Osteogénesis/genética , Proteómica , Células Madre Mesenquimatosas/metabolismo , Ratas Endogámicas Lew , Regeneración Ósea/fisiología , Diferenciación Celular , Vesículas Extracelulares/metabolismo
3.
Clin Oral Implants Res ; 35(2): 141-154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37964421

RESUMEN

OBJECTIVES: Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS: MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS: While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION: Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.


Asunto(s)
Células Madre Mesenquimatosas , Fibrina Rica en Plaquetas , Ratas , Humanos , Animales , Medios de Cultivo Condicionados/metabolismo , Proteómica , Secretoma , Regeneración Ósea , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Colágeno/metabolismo , Cráneo/cirugía , Cráneo/patología , Leucocitos/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685865

RESUMEN

Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.


Asunto(s)
Células Madre Mesenquimatosas , Fibrina Rica en Plaquetas , Humanos , Secretoma , Proteómica , Leucocitos , Proteínas de la Matriz Extracelular
5.
Cells ; 12(5)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36899904

RESUMEN

Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.


Asunto(s)
Células Madre Mesenquimatosas , Proteómica , Ratas , Humanos , Animales , Ratas Wistar , Medios de Cultivo Condicionados/metabolismo , Cráneo/patología , Regeneración Ósea , Colágeno/metabolismo , Células Madre Mesenquimatosas/metabolismo
6.
Front Bioeng Biotechnol ; 10: 969275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246352

RESUMEN

Culturing mesenchymal stromal cells (MSC) in human platelet lysate (HPL) supplemented media can enhance their osteogenic differentiation potential. The objective of this study was to test the hypothesis that conditioned media (CM) derived from HPL-cultured MSC also have pro-osteogenic effects. Pooled CM was prepared from HPL-cultured human bone marrow MSC (BMSC) of multiple donors and applied on BMSC of different donors (than those used for CM preparation), with or without additional supplementation [HPL, fetal bovine serum (FBS)] and osteogenic stimulation. At various time-points, cell proliferation, alkaline phosphatase (ALP) activity, osteogenic gene expression and in vitro mineralization were assessed. BMSC in standard unstimulated growth media served as controls. After 3-7 days, CM alone did not promote BMSC proliferation or ALP activity; supplementation of CM with HPL slightly improved these effects. After 2 and 7 days, CM alone, but not CM supplemented with HPL, promoted osteogenic gene expression. After 14 days, only CM supplemented with FBS and osteogenic stimulants supported in vitro BMSC mineralization; CM alone and CM supplemented with HPL did not support mineralization, regardless of osteogenic stimulation. In summary, CM from HPL-cultured BMSC promoted osteogenic gene expression but not in vitro mineralization in allogeneic BMSC even when supplemented with HPL and/or osteogenic stimulants. Future studies should investigate the role and relevance of supplementation and osteogenic induction in in vitro assays using CM from MSC.

7.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613880

RESUMEN

Bone regeneration is driven by mesenchymal stromal cells (MSCs) via their interactions with immune cells, such as macrophages (MPs). Bone substitutes, e.g., bi-calcium phosphates (BCPs), are commonly used to treat bone defects. However, little research has focused on MSC responses to BCPs in the context of inflammation. The objective of this study was to investigate whether BCPs influence MSC responses and MSC-MP interactions, at the gene and protein levels, in an inflammatory microenvironment. In setup A, human bone marrow MSCs combined with two different BCP granules (BCP 60/40 or BCP 20/80) were cultured with or without cytokine stimulation (IL1ß + TNFα) to mimic acute inflammation. In setup B, U937 cell-line-derived MPs were introduced via transwell cocultures to setup A. Monolayer MSCs with and without cytokine stimulation served as controls. After 72 h, the expressions of genes related to osteogenesis, healing, inflammation and remodeling were assessed in the MSCs via quantitative polymerase chain reactions. Additionally, MSC-secreted cytokines related to healing, inflammation and chemotaxis were assessed via multiplex immunoassays. Overall, the results indicate that, under both inflammatory and non-inflammatory conditions, the BCP granules significantly regulated the MSC gene expressions towards a pro-healing genotype but had relatively little effect on the MSC secretory profiles. In the presence of the MPs (coculture), the BCPs positively regulated both the gene expression and cytokine secretion of the MSCs. Overall, similar trends in MSC responses were observed with BCP 60/40 and BCP 20/80. In summary, within the limits of in vitro models, these findings suggest that the presence of BCP granules at a surgical site may not necessarily have a detrimental effect on MSC-mediated wound healing, even in the event of inflammation.


Asunto(s)
Sustitutos de Huesos , Células Madre Mesenquimatosas , Humanos , Sustitutos de Huesos/metabolismo , Células U937 , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Diferenciación Celular
8.
Dent Clin North Am ; 66(1): 111-130, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794550

RESUMEN

Successful periodontal regeneration requires the hierarchical reorganization of multiple tissues including periodontal ligament, cementum, alveolar bone, and gingiva. The limitation of conventional regenerative therapies has been attracting research interest in tissue engineering-based periodontal therapies where progenitor cells, scaffolds, and bioactive molecules are delivered. Scaffolds offer not only structural support but also provide geometrical clue to guide cell fate. Additionally, functionalization improves bioactive properties to the scaffold. Various scaffold designs have been proposed for periodontal regeneration. These include the fabrication of biomimetic periodontal extracellular matrix, multiphasic scaffolds with tissue-specific layers, and personalized 3D printed scaffolds. This review summarizes the basic concept as well as the recent advancement of scaffold designing and fabrication for periodontal regeneration and provides an insight of future clinical translation.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Cemento Dental , Humanos , Ligamento Periodontal
9.
Front Bioeng Biotechnol ; 9: 783468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917602

RESUMEN

Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4-8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.

10.
Stem Cell Res Ther ; 12(1): 575, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34776000

RESUMEN

BACKGROUND: Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. METHODS: PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. RESULTS: Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. CONCLUSION: Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Regeneración Ósea , Diferenciación Celular , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido
11.
Front Bioeng Biotechnol ; 9: 739225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513817

RESUMEN

Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.

12.
Biomed Phys Eng Express ; 7(5)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34404040

RESUMEN

Gelatin has emerged as a biocompatible polymer with high printability in scaffold-based tissue engineering. The aim of the current study was to investigate the potential of genipin-crosslinked 3D printed gelatin scaffolds for temporomandibular joint (TMJ) cartilage regeneration. Crosslinking with genipin increased the stability and mechanical properties, without any cytotoxic effects. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSC) on the scaffolds were compared to cell pellets and spheres. Although hBMSC seeded scaffolds showed a lower expression of chondrogenesis-related genes compared to cell pellets and spheres, they demonstrated a significantly reduced expression of collagen (COL) 10, suggesting a decreased hypertrophic tendency. After 21 days, staining with Alcian blue and immunofluorescence for SOX9 and COL1 confirmed the chondrogenic differentiation of hBMSC on genipin-crosslinked gelatin scaffolds. In summary, 3D printed gelatin-genipin scaffolds supported the viability, attachment and chondrogenic differentiation of hBMSC, thus, demonstrating potential for TMJ cartilage regeneration applications.


Asunto(s)
Articulación Temporomandibular , Andamios del Tejido , Cartílago , Gelatina , Humanos , Iridoides , Impresión Tridimensional
14.
Artículo en Inglés | MEDLINE | ID: mdl-32974308

RESUMEN

Gingiva has been identified as a minimally invasive source of multipotent progenitor cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation, it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates several advantages of three-dimensional (3D) spheroid cultures of mesenchymal stromal cells (MSCs) over conventional 2D monolayers. The present study aimed to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum (FBS) and characterized based on in vitro proliferation, immunophenotype and multi-lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG) and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high cell viability were formed in HPL media. Expression of stemness- and osteogenesis-related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally, secretion of several growth factors and chemokines was enhanced in GPC/BMSC spheroids, while that of pro-inflammatory cytokines was reduced, compared to monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid culture further enhances stemness- and osteogenesis-related gene expression, and cytokine secretion in GPCs, comparable to that of BMSCs.

15.
Stem Cell Res Ther ; 11(1): 351, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32962723

RESUMEN

BACKGROUND: Human platelet lysate (HPL) is emerging as the preferred xeno-free supplement for the expansion of mesenchymal stromal cells (MSCs) for bone tissue engineering (BTE) applications. Due to a growing demand, the need for standardization and scaling-up of HPL has been highlighted. However, the optimal storage time of the source material, i.e., outdated platelet concentrates (PCs), remains to be determined. The present study aimed to determine the optimal storage time of PCs in terms of the cytokine content and biological efficacy of HPL. METHODS: Donor-matched bone marrow (BMSCs) and adipose-derived MSCs (ASCs) expanded in HPL or fetal bovine serum (FBS) were characterized based on in vitro proliferation, immunophenotype, and multi-lineage differentiation. Osteogenic differentiation was assessed at early (gene expression), intermediate [alkaline phosphatase (ALP) activity], and terminal stages (mineralization). Using a multiplex immunoassay, the cytokine contents of HPLs produced from PCs stored for 1-9 months were screened and a preliminary threshold of 4 months was identified. Next, HPLs were produced from PCs stored for controlled durations of 0, 1, 2, 3, and 4 months, and their efficacy was compared in terms of cytokine content and BMSCs' proliferation and osteogenic differentiation. RESULTS: BMSCs and ASCs in both HPL and FBS demonstrated a characteristic immunophenotype and multi-lineage differentiation; osteogenic differentiation of BMSCs and ASCs was significantly enhanced in HPL vs. FBS. Multiplex network analysis of HPL revealed several interacting growth factors, chemokines, and inflammatory cytokines. Notably, stem cell growth factor (SCGF) was detected in high concentrations. A majority of cytokines were elevated in HPLs produced from PCs stored for ≤ 4 months vs. > 4 months. However, no further differences in PC storage times between 0 and 4 months were identified in terms of HPLs' cytokine content or their effects on the proliferation, ALP activity, and mineralization of BMSCs from multiple donors. CONCLUSIONS: MSCs expanded in HPL demonstrate enhanced osteogenic differentiation, albeit with considerable donor variation. HPLs produced from outdated PCs stored for up to 4 months efficiently supported the proliferation and osteogenic differentiation of MSCs. These findings may facilitate the standardization and scaling-up of HPL from outdated PCs for BTE applications.


Asunto(s)
Plaquetas , Células Madre Mesenquimatosas , Osteogénesis , Ingeniería de Tejidos , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Manejo de Especímenes , Factores de Tiempo
16.
Int J Implant Dent ; 6(1): 4, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32020348

RESUMEN

BACKGROUND: The objective of this study was to assess patient-reported outcomes such as satisfaction and quality of life after advanced alveolar bone augmentation with anterior iliac crest grafting and implant treatment in orally compromised patients. METHODS: This cross-sectional retrospective cohort study included 59 patients (29 women and 30 men) with major functional problems, who underwent advanced alveolar augmentation with autologous iliac bone grafts during a 100-year period (2002-2012). The self-administered questionnaire included 36 validated questions related to (1) demographics, (2) perceived general and oral health, (3) donor site and hospitalization, (4) status of implants and/or prosthesis, and (5) oral health-related quality of life (OHRQoL). RESULTS: Questionnaires were completed by 44 patients: 24 women and 20 men (response rate, 74.6%). Most patients reported good tolerance of the operative iliac bone harvesting (85%) and implant (90%) procedures. Post-operative pain at the donor site was reported by 38%, lasting 18.1 ± 16.1 days. An average of 4.3 ± 3.5 days of hospitalization and 20.2 ± 18.5 days of sick leave was reported. The overall satisfaction with prosthetic reconstruction was 90.5%. OHRQoL was reported with a mean Oral Health Impact Profile-14 (OHIP-14) score of 8.4. CONCLUSION: Favorable OHRQoL and satisfaction were reported after advanced reconstruction of alveolar ridges with iliac crest-derived grafting and implants in severely compromised patients. However, this treatment requires substantial resources including hospitalization and sick leave.

17.
J Clin Periodontol ; 46 Suppl 21: 162-182, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30623455

RESUMEN

AIM: The objective of the present review was to answer the focused question: what is the effect of cell therapy in terms of orofacial bone regeneration compared to grafting with only biomaterial scaffolds and/or autogenous bone? METHODS: Electronic databases were searched for relevant controlled clinical and pre-clinical (large-animal) studies. Separate meta-analyses of quantitative data regarding histological or radiographic new bone formation were performed. RESULTS: Forty-seven eligible clinical and 57 pre-clinical studies were included. Clinical studies were categorized based on the use of "minimally manipulated" whole tissues (e.g., bone marrow) or ex vivo expanded cells from "uncommitted" (bone marrow, adipose tissue) or "committed" sources (periosteum, bone). Based on limited and heterogeneous clinical evidence, implantation of cells (mostly whole bone marrow), in combination with biomaterial scaffolds results in bone regeneration which is (a) superior compared to implantation of scaffolds alone in sinus and horizontal ridge augmentation, and (b) comparable to autogenous bone in alveolar cleft repair. CONCLUSIONS: Although current evidence points to the benefits of cell therapy in certain clinical indications, it is unclear whether the use of ex vivo expanded cells, either uncommitted or committed, is superior to whole tissue fractions in terms of bone regeneration. The relatively larger effect sizes in favour of cell therapy observed in pre-clinical studies are diminished in clinical trials. Future controlled studies should include cost-effectiveness analyses to guide clinical decision-making.


Asunto(s)
Aumento de la Cresta Alveolar , Regeneración Ósea , Animales , Materiales Biocompatibles , Trasplante Óseo , Huesos , Tratamiento Basado en Trasplante de Células y Tejidos
18.
Tissue Eng Part B Rev ; 24(4): 300-316, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29400140

RESUMEN

Reconstruction of degenerated temporomandibular joint (TMJ) structures remains a clinical challenge. Tissue engineering (TE) is a promising alternative to current treatment options, where the TMJ is either left without functional components, or replaced with autogenous, allogeneic, or synthetic grafts. The objective of this systematic review was to answer the focused question: in experimental animal models, does the implantation of biomaterial scaffolds loaded with cells and/or growth factors (GFs) enhance regeneration of the discal or osteochondral TMJ tissues, compared with scaffolds alone, without cells, or GFs? Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) guidelines, electronic databases were searched for relevant controlled preclinical in vivo studies. Thirty studies reporting TMJ TE strategies in both small (rodents, rabbits; n = 25) and large animals (dogs, sheep, goats; n = 5) reporting histological and/or radiographic outcomes were included. Twelve studies reported ectopic (subcutaneous) implantation models in rodents, whereas 18 studies reported orthotopic, surgically induced defect models in large animals. On average, studies presented with an unclear-to-high risk of bias. In most studies, mesenchymal stem cells or chondrocytes were used in combination with either natural or synthetic polymer scaffolds, aiming for either TMJ disc or condyle regeneration. In summary, the overall preclinical evidence (ectopic [n = 6] and orthotopic TMJ models [n = 6]) indicate that addition of chondrogenic and/or osteogenic cells to biomaterial scaffolds enhances the potential for TMJ tissue regeneration. Standardization of animal models and quantitative outcome evaluations (biomechanical, biochemical, histomorphometric, and radiographic) in future studies, would allow more reliable comparisons and increase the validity of the results.


Asunto(s)
Modelos Animales de Enfermedad , Regeneración , Medicina Regenerativa/métodos , Trastornos de la Articulación Temporomandibular , Articulación Temporomandibular , Andamios del Tejido/química , Animales , Congresos como Asunto , Perros , Cabras , Humanos , Ovinos , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Articulación Temporomandibular/fisiología , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/terapia
19.
J Tissue Eng Regen Med ; 12(1): e336-e349, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095650

RESUMEN

The regeneration and establishment of osseointegration within oral peri-implant bone defects remains a clinical challenge. Bone tissue engineering (BTE) is emerging as a promising alternative to autogenous and/or biomaterial-based bone grafting. The objective of this systematic review was to answer the focused question: in animal models, do cell-based BTE strategies enhance bone regeneration and/or implant osseointegration in experimental peri-implant defects, compared with grafting with autogenous bone or only biomaterial scaffolds? Electronic databases were searched for controlled animal studies reporting on peri-implant defects and implantation of mesenchymal stem cells (MSC) or other cells seeded on biomaterial scaffolds, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Random effects meta-analyses were performed for the outcomes histomorphometric bone area fraction (BA) and bone-to-implant contact (BIC). Nineteen studies reporting on large animal models (dogs and sheep) were included. Experimental defects were created surgically (16 studies) or via ligature-induced peri-implantitis (LIPI, three studies). In general, studies presented with an unclear to high risk of bias. In most studies, MSC were used in combination with alloplastic mineral phase or polymer scaffolds; no study directly compared cell-loaded scaffolds vs. autogenous bone. In three studies, cells were also modified by ex vivo gene transfer of osteoinductive factors. The meta-analyses indicated statistically significant benefits in favour of: (a) cell-loaded vs. cell-free scaffolds [weighted mean differences (WMD) of 10.73-12.30% BA and 11.77-15.15% BIC] in canine surgical defect and LIPI models; and (b) gene-modified vs. unmodified cells (WMD of 29.44% BA and 16.50% BIC) in canine LIPI models. Overall, heterogeneity in the meta-analyses was high (I2 70-88%); considerable variation was observed among studies regarding the nature of cells and scaffolds used. In summary, bone regeneration and osseointegration in peri-implant defects are enhanced by the addition of osteogenic cells to biomaterial scaffolds. Although the direction of treatment outcome is clearly in favour of BTE strategies, due to the limited magnitude of treatment effect observed, no conclusive statements regarding the clinical benefit of such procedures for oral indications can yet be made. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Huesos/fisiología , Implantes Dentales/efectos adversos , Periimplantitis/etiología , Ingeniería de Tejidos/métodos , Animales , Ligadura , Sesgo de Publicación , Andamios del Tejido/química
20.
Tissue Eng Part B Rev ; 23(6): 552-569, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28610481

RESUMEN

Fetal bovine serum (FBS) is the most commonly used supplement for ex vivo expansion of human mesenchymal stem cells (hMSCs) for bone tissue engineering applications. However, from a clinical standpoint, it is important to substitute animal-derived products according to current good manufacturing practice (cGMP) guidelines. Humanized alternatives to FBS include three categories of products: human serum (HS), human platelet derivatives (HPDs)-including platelet lysate (PL) or platelet releasate (PR), produced by freeze/thawing or chemical activation of platelet concentrates, respectively, and chemically defined media (serum-free) (CDM). In this systematic literature review, the in vitro and in vivo osteogenic potential of hMSCs expanded in humanized (HS-, HPD-, or CDM-supplemented) media versus hMSCs expanded in FBS-supplemented media, was compared. In addition, PL and PR were compared in terms of their growth factor (GF)/cytokine-content and cell-culture efficacy. When using either 10-20% autologous or pooled HS, 3-10% pooled HPDs or CDM supplemented with GFs, in comparison with 10-20% FBS, a majority of studies reported similar or superior in vitro proliferation and osteogenic differentiation, and in vivo bone formation in ectopic or orthotopic rodent models. Moreover, a trend for higher GF content was observed in PL versus PR, although evidence for cell culture efficacy is limited. In summary, humanized supplements seem at least equally effective as FBS for hMSC expansion and osteogenic differentiation. Although pooled HPDs appear to be the most favorable supplement for large-scale hMSC expansion, further efforts are needed to standardize the preparation and composition of these products in compliance with cGMP standards.


Asunto(s)
Plaquetas/metabolismo , Huesos/citología , Técnicas de Cultivo de Célula/métodos , Células Madre Mesenquimatosas/citología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular , Humanos , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...