Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Anal Chem ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042763

RESUMEN

Sensitive and reliable microRNA imaging in living cells has significant implications for clinical diagnosis and monitoring. Catalytic DNA circuits have emerged as potent tools for tracking these intracellular biomarkers and probing the corresponding biochemical processes. However, their utility is hindered by the low resistance to external interference, leading to undesired off-site activation and consequent signal leakage. Therefore, achieving the endogenous control of the DNA circuit's activation is preferable to the reliable target analysis in living cells. In this study, we attempted to address this challenge by engineering a simple yet effective endogenous glutathione (GSH)-regulated hybridization chain reaction (HCR) circuit for acquiring high-contrast miRNA imaging. Initially, the HCR hairpin reactants were blocked by the engineered disulfide-integrated DNA duplex, thus effectively passivating their sensing function. And the precaged HCR hairpin was liberated by the cell-specific GSH molecule, thus initiating the HCR system for selectively amplified detection of microRNA-21 (miR-21). This approach prevented unwanted signal leakage before exposure into target cells, thus ensuring robust miR-21 imaging with high accuracy and reliability in specific tumor cells. Moreover, the endogenously responsive HCR circuit established a link between the small regulatory factors and miRNA, thereby enhancing the signal gain. In summary, the endogenously activatable DNA circuit represents a versatile toolbox for robust bioanalysis and exploration of potential signaling pathways in living cells.

2.
Anal Chem ; 96(23): 9666-9675, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815126

RESUMEN

Epigenetic modification plays an indispensable role in regulating routine molecular signaling pathways, yet it is rarely used to modulate molecular self-assembly networks. Herein, we constructed a bioorthogonal demethylase-stimulated DNA circuitry (DSC) system for high-fidelity imaging of microRNA (miRNA) in live cells and mice by eliminating undesired off-site signal leakage. The simple and robust DSC system is composed of a primary cell-specific circuitry regulation (CR) module and an ultimate signal-transducing amplifier (SA) module. After the modularly designed DSC system was delivered into target live cells, the DNAzyme of the CR module was site-specifically activated by endogenous demethylase to produce fuel strands for the subsequent miRNA-targeting SA module. Through the on-site and multiply guaranteed molecular recognitions, the lucid yet efficient DSC system realized the reliably amplified in vivo miRNA sensing and enabled the in-depth exploration of the demethylase-involved signal pathway with miRNA in live cells. Our bioorthogonally on-site-activated DSC system represents a universal and versatile biomolecular sensing platform via various demethylase regulations and shows more prospects for more different personalized theragnostics.


Asunto(s)
ADN Catalítico , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , ADN Catalítico/metabolismo , ADN Catalítico/química , Animales , Ratones , Humanos , Metilación de ADN , Imagen Óptica
3.
Acc Chem Res ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271669

RESUMEN

ConspectusThe pursuit of in-depth studying the nature and law of life activity has been dominating current research fields, ranging from fundamental biological studies to applications that concern synthetic biology, bioanalysis, and clinical diagnosis. Motivated by this intention, the spatiotemporally controlled and in situ analysis of living cells has been a prospective branch by virtue of high-sensitivity imaging of key biomolecules, such as biomarkers. The past decades have attested that deoxyribonucleic acid (DNA), with biocompatibility, programmability, and customizable features, is a competitive biomaterial for constructing high-performance molecular sensing tools. To conquer the complexity of the wide extracellular-intracellular distribution of biomarkers, it is a meaningful breakthrough to explore high-efficiently amplified DNA circuits, which excel at operating complex yet captivating dynamic reaction networks for various bioapplications. In parallel, the multidimensional performance improvements of nucleic acid circuits, including the availability, detection sensitivity, and reliability, are critical parameters for realizing accurate imaging and cell regulation in bioanalysis.In this Account, we summarize our recent work on enzyme-free dynamic DNA reaction networks for bioanalysis from three main aspects: DNA circuitry functional extension of molecular recognition for epigenetic analysis and regulation, DNA circuitry amplification ability improvement for sensitive biomarker detection, and site-specific activation of DNA circuitry systems for reliable and accurate cell imaging. In the first part, we have designed an epigenetically responsive deoxyribozyme (DNAzyme) circuitry system for intracellular imaging and gene regulation, which enriches the possible analyzed species by chemically modifying conventional DNAzyme. For example, an exquisite N6-methyladenine (m6A)-caged DNAzyme was built for achieving the precise FTO (fat mass and obesity-associated protein)-directed gene regulation. In addition, varieties of DNAzyme-based nanoplatforms with self-sufficient cofactor suppliers were assembled, which subdued the speed-limiting hardness of DNAzyme cofactors in live-cell applications. In the second part, we have developed a series of hierarchically assembled DNA circuitry systems to improve the signal transduction ability of traditional DNA circuits. First, the amplification ability of the DNAzyme circuit has been significantly enhanced via several heterogeneously or homogeneously concatenated circuitry models. Furthermore, a feedback reaction pathway was integrated into these concatenated circuits, thus dramatically increasing the amplification efficiency. Second, considering the complex cellular environment, we have simplified the redundancy of multicomponents or reaction procedures of traditional cascaded circuits, relying on the minimal component complexity and merely one modular catalytic reaction, which guaranteed high cell-delivering uniformity while fostering reaction kinetics and analysis reliability. In the third part, we have constructed in-cell-selective endogenous-stimulated DNA circuitry systems via the multiply guaranteed molecular recognitions, which could not only eliminate the signal leakage, but could also retain its on-site and multiplex signal amplification. Based on the site-specific activation strategy, more circuitry availability in cellular scenarios has been acquired for reliable and precise biological sensing and regulation. These enzyme-free dynamic DNA reaction networks demonstrate the purpose-to-concreteness engineering for tailored multimolecule recognition and multiple signal amplification, achieving high-gain signal transduction and high-reliability targeted imaging in bioanalysis. We envision that the enzyme-free dynamic DNA reaction network can contribute to more bioanalytical layouts, which will facilitate the progression of clinical diagnosis and prognosis.

4.
Small ; 20(2): e2305672, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670211

RESUMEN

The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Nanopartículas , ADN
5.
Adv Healthc Mater ; 13(2): e2300694, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37846795

RESUMEN

DNA-based assemblies hold immense prospects for antibacterial application, yet are constrained by their poor specificity and deficient antibacterial delivery. Herein, the fabrication of a versatile rolling circle amplification (RCA)-sustained DNA assembly is reported, encoding simultaneously with multivalent aptamers and tandem antibacterial agents, for target-specific and efficient antibacterial application. In the compact RCA-sustained antibacterial platform, the facilely organized multivalent aptamers guarantee the target bacteria-specific delivery of sufficient antibacterial agents which is assembled through DNA-stabilizing silver nanostructures. It is shown that the biocompatible DNA system could enhance bacteria elimination and simultaneously facilitate wound healing in vivo. By virtue of the programmable RCA assembly, the present RCA-sustained system provides a highly modular and scalable approach to design versatile multifunctional therapeutic systems.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Antibacterianos/farmacología , Oligonucleótidos , Cicatrización de Heridas , Técnicas de Amplificación de Ácido Nucleico
6.
Chempluschem ; 88(10): e202300432, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37706615

RESUMEN

The isothermal enzyme-free nucleic acid amplification method plays an indispensable role in biosensing by virtue of its simple, robust, and highly efficient properties without the assistance of temperature cycling or/and enzymatic biocatalysis. Up to now, enzyme-free nucleic acid amplification has been extensively utilized for biological assays and has achieved the highly sensitive detection of various biological targets, including DNAs, RNAs, small molecules, proteins, and even cells. In this Review, the mechanisms of entropy-driven reaction, hybridization chain reaction, catalytic hairpin assembly and DNAzyme are concisely described and their recent application as biosensors is comprehensively summarized. Furthermore, the current problems and the developments of these DNA circuits are also discussed.


Asunto(s)
ADN Catalítico , ADN , ADN/metabolismo , ADN Catalítico/metabolismo , Hibridación de Ácido Nucleico , Biocatálisis , Catálisis
7.
Sci Total Environ ; 904: 166641, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647954

RESUMEN

With the increasing use of plastics, nano- and micro-plastic (NMP) pollution has become a hot topic in the scientific community. Ubiquitous NMPs, as emerging contaminants, are becoming a global issue owing to their persistence and potential toxicity. Compared with studies of marine and freshwater environments, investigations into the sources, transport properties, and fate of NMPs in soil and groundwater environments remain at a primary stage. Hence, the promotion of such research is critically important. Here, we integrate existing information and recent advancements to compile a comprehensive evaluation of the sources and transport properties of NMPs in soil and groundwater environments. We first provide a systematic description of the various sources and transport behaviors of NMPs. We then discuss the theories (e.g., clean-bed filtration and Derjaguin-Landau-Verwey-Overbeek theories) and models (e.g., single-site and dual-site kinetic retention and transport models) of NMP transport through saturated porous media. Finally, we outline the potential limitations of current research and suggest directions for future research. Overall, this review intends to assimilate and outline current knowledge and provide a useful reference frame to determine the sources and transport properties of NMPs in soil and groundwater environments.

8.
Angew Chem Int Ed Engl ; 62(33): e202307418, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37379042

RESUMEN

Synthetic catalytic DNA circuits have been recognized as a promising signal amplification toolbox for sensitive intracellular imaging, yet their selectivity and efficiency are always constrained by uncontrolled off-site signal leakage and inefficient on-site circuitry activation. Thus, the endogenously controllable on-site exposure/activation of DNA circuits is highly desirable for achieving the selective imaging of live cells. Herein, an endogenously activated DNAzyme strategy was facilely integrated with a catalytic DNA circuit for guiding the selective and efficient microRNA imaging in vivo. To prevent the off-site activation, the circuitry constitute was initially caged without sensing functions, which could be selectively liberated by DNAzyme amplifier to guarantee the high-contrast microRNA imaging in target cells. This intelligent on-site modulation strategy can tremendously expand these molecularly engineered circuits in biological systems.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , ADN Catalítico/genética , ADN/genética , Diagnóstico por Imagen , Técnicas Biosensibles/métodos
9.
Chem Sci ; 14(8): 2159-2167, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36845932

RESUMEN

The accurate identification of multiple biomarkers involved in disease plays a vital role in effectively distinguishing cancer cells from normal cells, facilitating reliable cancer diagnosis. Motivated by this knowledge, we have engineered a compact and clamped cascaded DNA circuit for specifically discriminating cancer cells from normal cells via the amplified multi-microRNA imaging strategy. The proposed DNA circuit combines the traditional cascaded DNA circuit with multiply localized responsive character through the elaboration of two super-hairpin reactants, thus concurrently streamlining the circuit components and realizing localization-intensified cascaded signal amplification. In parallel, the multiple microRNA-stimulated sequential activations of the compact circuit, combined with a handy logic operation, significantly elevated the cell-discriminating reliability. Applications of the present DNA circuit in vitro and in cellular imaging experiments were executed with expected results, therefore illustrating that our DNA circuit is useful for precise cell discrimination and further clinical diagnosis.

10.
Nano Lett ; 23(4): 1386-1394, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36719793

RESUMEN

Rolling circle amplification (RCA) enables the facile construction of compact and versatile DNA nanoassemblies which are yet rarely explored for intracellular analysis. This is might be ascribed to the uncontrollable and inefficient probe integration/activation. Herein, by encoding with tandem allosteric deoxyribozyme (DNA-cleaving DNAzyme), a multifunctional RCA nanogel was established for realizing the efficient intracellular microRNA imaging via the successive activation of the RCA-disassembly module and signal amplification module. The endogenous microRNA stimulates the precise degradation of DNA nanocarriers, thus leading to the efficient exposure of RCA-entrapped DNAzyme biocatalyst for an amplified readout signal. Our bioorthogonal DNAzyme disassembly strategy achieved the robust analysis of intracellular biomolecules, thus showing more prospects in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , MicroARNs/análisis , Nanogeles , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/análisis , Técnicas Biosensibles/métodos , Límite de Detección
11.
Small ; 19(17): e2207961, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717281

RESUMEN

Trace analyte detection in complex intracellular environment requires the development of simple yet robust self-sufficient molecular circuits with high signal-gain and anti-interference features. Herein, a minimal non-enzymatic self-replicate DNA circuitry (SDC) system is proposed with high-signal-gain for highly efficient biosensing in living cells. It is facilely engineered through the self-stacking of only one elementary cascade hybridization reaction (CHR), thus is encoding with more economic yet effective amplification pathways and reactants. Trigger (T) stimulates the activation of CHR for producing numerous T replica that reversely motivate new CHR reaction cycles, thus achieving the successive self-replication of CHR system with an exponentially magnified readout signal. The intrinsic self-replicate circuity design and the self-accelerated reaction format of SDC system is experimentally demonstrated and theoretically simulated. With simple circuitry configuration and low reactant complexity, the SDC amplifier enables the high-contrast and accurate visualization of microRNA (miRNA), ascribing to its robust molecular recognition and self-sufficient signal amplification, thus offering a promising strategy for monitoring these clinically significant analytes.


Asunto(s)
Técnicas Biosensibles , MicroARNs , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , Hibridación de Ácido Nucleico , Diagnóstico por Imagen , Técnicas Biosensibles/métodos
12.
Anal Chem ; 94(40): 13951-13957, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36170650

RESUMEN

Exploring the characteristic functions of polynucleotide kinase (PNK) could substantially promote the elucidation of PNK-related mechanistic pathways. Yet, the sensitive and reliable detection of intracellular PNK still presents a challenging goal. Herein, we propose a simple autocatalytic hybridization circuit (AHC) for in situ intracellular imaging of PNK with high reliability. The AHC amplifier consists of two mutually activated hybridization chain reaction (HCR) modules for magnified signal transduction. The PNK is transduced into initiator I by phosphorylation and cleavage of mediator Hp. Initiator I activates the initial HCR-1 module, leading to the formation of long dsDNA nanowires that carry numerous initiator T. Then, T-initiated feedback HCR-2 module generates branched products that contain plentiful initiator I, thus realizing an autocatalytic HCR amplification reaction. Simultaneously, the HCR-2 module is also assembled as a versatile signal transduction unit for generating the amplified readout. Based on the mutually sustained accumulation of two initiators for the reciprocal activation of two reaction modules, continuous signal amplification and assembly of high-molecular-weight copolymers endow the AHC system with high sensitivity and robustness for the PNK assay. Moreover, the PNK-sensing AHC system achieves reliable imaging of intracellular PNK, thus showing great potential to decipher the correlation between PNK and related diseases.


Asunto(s)
Técnicas Biosensibles , Polinucleótido 5'-Hidroxil-Quinasa , Bacteriófago T4 , Técnicas Biosensibles/métodos , ADN/metabolismo , Hibridación de Ácido Nucleico , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Reproducibilidad de los Resultados
13.
ACS Appl Mater Interfaces ; 14(28): 31727-31736, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786848

RESUMEN

Polynucleotide kinase (PNK) plays an essential role in various cellular events by regulating phosphorylation processes, and abnormal homeostasis of PNK could cause many human diseases. Herein, we proposed an autocatalytic hybridization system (AHS) through the elaborate integration of hybridization chain assembly (HCA) and catalytic DNA assembly (CDA) that enables a highly efficient positive feedback amplification. The PNK-targeting AHS biosensor is composed of three modules: a recognition module, an HCA amplification module, and a CDA autocatalytic module. In the presence of PNK, the recognition module could transform the PNK input into an exposed nucleic acid initiator (I). Then the initiator strand I could trigger the autonomous HCA process in the amplification module, and the resulted HCA products could reassemble the split CDA trigger strand T, subsequently inducing the CDA process in the autocatalytic module to form abundant DNA duplex products. Consequently, the embedded initiator strand I was liberated from the CDA duplex product to autonomously trigger the new rounds of HCA circuit. The rational integration and cooperative cross-activation between the HCA and CDA module could prominently accelerate the reaction and realize the exponential amplification efficiency by initiator regeneration. As a result, the self-sustainable AHS amplifier could implement the sensitive detection of PNK in vitro and in biological samples and further fulfill accurate monitoring of the intracellular PNK activity and the effective screening of PNK inhibitors. This work paves a way for exploiting highly efficient artificial DNA circuits to analyze low-abundance biomarkers, holding great potential in biochemical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Polinucleótido 5'-Hidroxil-Quinasa , Técnicas Biosensibles/métodos , ADN/genética , Humanos , Hibridación de Ácido Nucleico , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Espectrometría de Fluorescencia/métodos
14.
Small ; 18(32): e2203341, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35843889

RESUMEN

DNA amplification machines show great promise for intracellular imaging, yet are always constrained by off-site machinery activation or signal leakage, originating from the inherent thermodynamically driven hybridization between machinery substrates. Herein, an entropy-driven catalytic DNA amplification machine is integrated with the on-site amplified substrate exposure procedure to realize the high-contrast in vivo imaging of microRNA (miRNA). The key machinery substrate (fuel strands) is initially split into substrate subunits that are respectively grafted into an auxiliary DNA polymerization amplification accessory for eliminating the undesired signal leakage. Meanwhile, in target cells, the auxiliary polymerization accessory can be motivated by cell-specific mRNA for successively restoring their intact machine-propelling functions for guaranteeing the on-site amplified imaging of miRNA with high specificity. This intelligent on-site multiply guaranteed machinery can improve the specificity of catalytic DNA machines for discriminating different cell types and, thus, can provide a remarkable prospect in biomedical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Técnicas Biosensibles/métodos , Catálisis , ADN Catalítico/metabolismo , MicroARNs/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico
15.
Small ; 18(21): e2200983, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35460185

RESUMEN

Probing endogenous molecular profiles in living entities is of fundamental significance to decipher biological functions and exploit novel theranostics. Despite programmable nucleic acid-based aptasensing systems across the breadth of molecular imaging, an aptasensing system enabling in vivo imaging with high sensitivity, accuracy, and adaptability is highly required yet is still in its infancy. Artificial catalytic DNA circuits that can modularly integrate to generate multiple outputs from a single input in an isothermal autonomous manner, have supplemented powerful toolkits for intracellular biosensing research. Herein, a multilayer nonenzymatic catalytic DNA circuits-based aptasensing system is devised for in situ imaging of a bioactive molecule in living mice by assembling branched DNA copolymers with high-molecular-weight and high-signal-gain based on avalanche-mimicking hybridization chain reactions (HCRs). The HCRs aptasensing circuit performs as a general and powerful sensing platform for precise analysis of a series of bioactive molecules due to its inherent rich recognition repertoire and hierarchical reaction accelerations. With tumor-targeting capsule encapsulation, the HCRs aptasensing circuit is specifically delivered into tumor cells and allowed the high-contrast imaging of intracellular adenosine triphosphate in living mice, highlighting its potential for visualizing these clinically important biomolecules and for studying the associated physiological processes.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Animales , Técnicas Biosensibles/métodos , ADN/genética , ADN Catalítico/metabolismo , ADN Concatenado , Ratones , Hibridación de Ácido Nucleico
16.
Anal Chem ; 94(10): 4495-4503, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234458

RESUMEN

Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , ADN , Metilación de ADN , Metilasas de Modificación del ADN , Metiltransferasas , Hibridación de Ácido Nucleico
17.
ACS Appl Mater Interfaces ; 14(4): 5080-5089, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35044153

RESUMEN

Aptasensors with high specificity have emerged as powerful tools for understanding various biological processes, thus providing tremendous opportunities for clinical diagnosis and prognosis. However, their applications in intracellular molecular imaging are largely impeded due to the low anti-interference capacity in biological environments and the moderate sensitivity to targets. Herein, a robust enzyme-free autocatalysis-driven feedback DNA circuit is devised for amplified aptasensing, for example, adenosine triphosphate (ATP) and thrombin, with a significantly improved sensitivity in living cells. This initiator-replicated hybridization chain reaction (ID-HCR) circuit was acquired by integrating the HCR circuit with the DNAzyme biocatalysis. Also, the autocatalysis-driven aptasensor consists of a recognition element and an amplification element. The recognition unit can specifically identify ATP or thrombin via a versatile conformational transformation, resulting in the exposure of the initiator to the autocatalysis-driven circuit. The ID-HCR element integrates the charming self-assembly characteristics of the HCR and the remarkable catalytic cleavage capacity of DNAzyme for realizing the continuously self-sustained regeneration or replication of trigger strands and for achieving an exponential signal gain. The autocatalysis-driven aptasensor has been validated for quantitative analysis of ATP and thrombin in vitro and for monitoring the corresponding aptamer substrates with various expressions in live cells. More importantly, the autocatalysis-driven aptasensor, as a versatile amplification strategy, holds enormous potential for analysis of other less abundant biomarkers by changing only the recognition element of the system.


Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN Catalítico/química , Trombina/análisis , Adenosina Trifosfato/química , Biocatálisis , Humanos , Límite de Detección , Células MCF-7 , Técnicas de Amplificación de Ácido Nucleico , Trombina/química
18.
Anal Chem ; 93(46): 15559-15566, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34748706

RESUMEN

Polynucleotide kinase (PNK) shows an in-depth correlationship with DNA repair and metabolism processes. The in situ visualization of intracellular PNK revealed an extremely biological significance in supplementing reliable and quantitative information on its spatiotemporal distribution in live cells. Herein, we developed a versatile cascaded DNA amplification circuit through the integration of catalytic DNA assembly and hybridization chain reaction circuits and realized the accurate evaluation of intracellular PNK activity via the Förster resonance energy transfer (FRET) principle. Initially, without PNK, trigger T was firmly caged in the PNK-recognizing hairpin HT, resulting in no disturbance of the concatenated circuit. However, with the introduction of PNK, the 5'-OH terminal of PNK-addressing HT was phosphorylated, then the phosphorylated HT could be subsequently digested by λ exonuclease (λ Exo) to produce trigger T of the cascaded DNA circuit. As a result, the integrated circuit was stimulated to produce an amplified FRET signal for quantitatively monitoring the activity of PNK. Due to the λ Exo-specific digestion of 5'-phosphate DNA and the high signal gain of the cascade circuit, our proposed strategy enables the sensitive analysis of PNK activity in vitro and in complex biological samples. Furthermore, our PNK-sensing platform was extensively explored in HeLa cells for realizing reliable intracellular PNK imaging and thus showed high potential in the future diagnosis and treatment of kinase-related diseases.


Asunto(s)
Técnicas Biosensibles , Polinucleótido 5'-Hidroxil-Quinasa , Bacteriófago T4 , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Hibridación de Ácido Nucleico , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo
19.
Nat Commun ; 12(1): 3953, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172725

RESUMEN

The systemic therapeutic utilisation of RNA interference (RNAi) is limited by the non-specific off-target effects, which can have severe adverse impacts in clinical applications. The accurate use of RNAi requires tumour-specific on-demand conditional activation to eliminate the off-target effects of RNAi, for which conventional RNAi systems cannot be used. Herein, a tumourous biomarker-activated RNAi platform is achieved through the careful design of RNAi prodrugs in extracellular vesicles (EVs) with cancer-specific recognition/activation features. These RNAi prodrugs are assembled by splitting and reconstituting the principal siRNAs into a hybridisation chain reaction (HCR) amplification machine. EVs facilitate the specific and efficient internalisation of RNAi prodrugs into target tumour cells, where endogenous microRNAs (miRNAs) promote immediate and autonomous HCR-amplified RNAi activation to simultaneously silence multiantenna hypoxia-related genes. With multiple guaranteed cancer recognition and synergistic therapy features, the miRNA-initiated HCR-promoted RNAi cascade holds great promise for personalised theranostics that enable reliable diagnosis and programmable on-demand therapy.


Asunto(s)
Hipoxia/genética , Medicina de Precisión , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapéutico , Vesículas Extracelulares/química , Vesículas Extracelulares/trasplante , Silenciador del Gen , Humanos , Ratones , MicroARNs/genética , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Profármacos/química , Profármacos/farmacocinética , Profármacos/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética
20.
J Am Chem Soc ; 143(18): 6895-6904, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33905655

RESUMEN

The epigenetic modification of nucleic acids represents a versatile approach for achieving high-efficient control over gene expression and transcription and could dramatically expand their biosensing and therapeutic applications. Demethylase-involved removal of N6-methyladenine (m6A) represents one of the vital epigenetic reprogramming events, yet its direct intracellular evaluation and as-guided gene regulation are extremely rare. The endonuclease-mimicking deoxyribozyme (DNAzyme) is a catalytically active DNA that enables the site-specific cleavage of the RNA substrate, and several strategies have imparted the magnificent responsiveness to DNAzyme by using chemical and light stimuli. However, the epigenetic regulation of DNAzyme has remained largely unexplored, leaving a significant gap in responsive DNA nanotechnology. Herein, we reported an epigenetically responsive DNAzyme system through the in vitro selection of an exquisite m6A-caged DNAzyme that could be specifically activated by FTO (fat mass and obesity-associated protein) demethylation for precise intracellular imaging-directed gene regulation. Based on a systematic investigation, the active DNAzyme configuration was potently disrupted by the site-specific incorporation of m6A modification and subsequently restored into the intact DNAzyme structure via the tunable FTO-specific removal of m6A-caging groups under a variety of conditions. This orthogonal demethylase-activated DNAzyme amplifier enables the robust and accurate monitoring of FTO and its inhibitors in live cells. Moreover, the simple demethylase-activated DNAzyme facilitates the assembly of an intelligent self-adaptive gene regulation platform for knocking down demethylase with the ultimate apoptosis of tumor cells. As a straightforward and scarless m6A removal strategy, the demethylase-activated DNAzyme system offers a versatile toolbox for programmable gene regulation in synthetic biology.


Asunto(s)
ADN Catalítico/metabolismo , ADN/metabolismo , Imagen Óptica , ADN/química , ADN Catalítico/química , ADN Catalítico/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Humanos , Células MCF-7 , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA