Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(15): 4658-4664, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563608

RESUMEN

Planar Josephson junctions are predicted to host Majorana zero modes. The material platforms in previous studies are two-dimensional electron gases (InAs, InSb, InAsSb, and HgTe) coupled to a superconductor such as Al or Nb. Here, we introduce a new material platform for planar JJs, the PbTe-Pb hybrid. The semiconductor, PbTe, was grown as a thin film via selective area epitaxy. The Josephson junction was defined by a shadow wall during the deposition of superconductor Pb. Scanning transmission electron microscopy reveals a sharp semiconductor-superconductor interface. Gate-tunable supercurrents and multiple Andreev reflections are observed. A perpendicular magnetic field causes interference patterns of the switching current, exhibiting Fraunhofer-like and SQUID-like behaviors. We further demonstrate a prototype device for Majorana detection wherein phase bias and tunneling spectroscopy are applicable.

2.
Nano Lett ; 23(23): 11137-11144, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37948302

RESUMEN

Disorder is the primary obstacle in the current Majorana nanowire experiments. Reducing disorder or achieving ballistic transport is thus of paramount importance. In clean and ballistic nanowire devices, quantized conductance is expected, with plateau quality serving as a benchmark for disorder assessment. Here, we introduce ballistic PbTe nanowire devices grown by using the selective-area-growth (SAG) technique. Quantized conductance plateaus in units of 2e2/h are observed at zero magnetic field. This observation represents an advancement in diminishing disorder within SAG nanowires as most of the previously studied SAG nanowires (InSb or InAs) have not exhibited zero-field ballistic transport. Notably, the plateau values indicate that the ubiquitous valley degeneracy in PbTe is lifted in nanowire devices. This degeneracy lifting addresses an additional concern in the pursuit of Majorana realization. Moreover, these ballistic PbTe nanowires may enable the search for clean signatures of the spin-orbit helical gap in future devices.

3.
Phys Rev Lett ; 129(16): 167702, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36306766

RESUMEN

Probing an isolated Majorana zero mode is predicted to reveal a tunneling conductance quantized at 2e^{2}/h at zero temperature. Experimentally, a zero-bias peak (ZBP) is expected and its height should remain robust against relevant parameter tuning, forming a quantized plateau. Here, we report the observation of large ZBPs in a thin InAs-Al hybrid nanowire device. The ZBP height can stick close to 2e^{2}/h, mostly within 5% tolerance, by sweeping gate voltages and magnetic field. We further map out the phase diagram and identify two plateau regions in the phase space. Despite the presence of disorder and quantum dots, our result constitutes a step forward toward establishing Majorana zero modes.

4.
Phys Rev Lett ; 128(7): 076803, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244449

RESUMEN

Hybrid semiconductor-superconductor nanowires are predicted to host Majorana zero modes that induce zero-bias peaks (ZBPs) in tunneling conductance. ZBPs alone, however, are not sufficient evidence due to the ubiquitous presence of Andreev bound states. Here, we implement a strongly resistive normal lead in InAs-Al nanowire devices and show that most of the expected Andreev bound state-induced ZBPs can be suppressed, a phenomenon known as environmental Coulomb blockade. Our result is the first experimental demonstration of this dissipative interaction effect on Andreev bound states and can serve as a possible filter to narrow down the ZBP phase diagram in future Majorana searches.

5.
Nat Commun ; 12(1): 5342, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504094

RESUMEN

Superconductivity and charge density wave (CDW) appear in the phase diagram of a variety of materials including the high-Tc cuprate family and many transition metal dichalcogenides (TMDs). Their interplay may give rise to exotic quantum phenomena. Here, we show that superconducting arrays can spontaneously form in TiSe2-a TMD with coexisting superconductivity and CDW-after lithium ion intercalation. We induce a superconducting dome in the phase diagram of LixTiSe2 by using the ionic solid-state gating technique. Around optimal doping, we observe magnetoresistance oscillations, indicating the emergence of periodically arranged domains. In the same temperature, magnetic field and carrier density regime where the resistance oscillations occur, we observe signatures for the anomalous metal-a state with a resistance plateau across a wide temperature range below the superconducting transition. Our study not only sheds further insight into the mechanism for the periodic electronic structure, but also reveals the interplay between the anomalous metal and superconducting fluctuations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...