Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(16): 7099-7112, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536960

RESUMEN

Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N < 3 compounds being the major contributors (>70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghai's atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Atmósfera , China , Atmósfera/química , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis
2.
Environ Sci Technol ; 58(10): 4691-4703, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38323401

RESUMEN

The negative effects of air pollution, especially fine particulate matter (PM2.5, particles with an aerodynamic diameter of ≤2.5 µm), on human health, climate, and ecosystems are causing significant concern. Nevertheless, little is known about the contributions of emerging pollutants such as plastic particles to PM2.5 due to the lack of continuous measurements and characterization methods for atmospheric plastic particles. Here, we investigated the levels of fine plastic particles (FPPs) in PM2.5 collected in urban Shanghai at a 2 h resolution by using a novel versatile aerosol concentration enrichment system that concentrates ambient aerosols up to 10-fold. The FPPs were analyzed offline using the combination of spectroscopic and microscopic techniques that distinguished FPPs from other carbon-containing particles. The average FPP concentrations of 5.6 µg/m3 were observed, and the ratio of FPPs to PM2.5 was 13.2% in this study. The FPP sources were closely related to anthropogenic activities, which pose a potential threat to ecosystems and human health. Given the dramatic increase in plastic production over the past 70 years, this study calls for better quantification and control of FPP pollution in the atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , China , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis
3.
Des Monomers Polym ; 25(1): 197-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755879

RESUMEN

Through the self-assembly reaction of 5-substituted isophthalic acid and bis(imidazolyl) ligands with Cd(II) ion or Zn(II) ion, two new coordination polymers with the chemical formulae of [Cd(5-meo-ip)(bmip)]n (1) and [Zn(5-pro-ip)(bip)]n·2 n(H2O) (2) (5-meo-H2ip = 5-methoxyisophthalic acid, 5-pro-H2ip = 5-propoxyisophthalic acid, bmip = 1,3-bis(2-methylimidazolyl)propane bip = 1,3-bis(imidazolyl)propane) were successfully obtained and structurally characterized by a series of characterization techniques. Moreover, compounds 1-2 show intense blue luminescence at room temperature. Furthermore, the assessment of their treatment activity on the uterine fibroids combined with ultrasound therapy was evaluated and the specific mechanism was investigated at the same time. Firstly, the effect of compound treatment on uterine fibroids apoptosis was detected via flow cytometry. Next, the apoptotic signaling pathway activation was detected through the Caspase-3 and Caspase-8 Activity Assay Kit.

4.
Sci Total Environ ; 837: 155817, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561930

RESUMEN

Carbonaceous aerosols (CAs) are major components of fine particulate matter (PM2.5) that dramatically influence the energy budget of Earth. However, accurate assessment of the climatic impacts of CAs is still challenging due to the large uncertainties remaining in the measurement of their optical properties. In this respect, a modified versatile aerosol concentration enrichment system integrated into optical instruments (VACES-OPTS) was set up to increase particle concentration and amplify signal-noise ratio during optical measurement. Based on the novel technique, this study was able to lower the detection limit of CAs by an order of magnitude under high temporal resolution (2 h) and small sampling flow (6 L min-1). Besides, stable and reliable optical data were obtained for absorption apportionment and source identification of black carbon (BC) and brown carbon (BrC). In the field application of the new system, high absorption coefficient of CAs in Shanghai, China was witnessed. Further analysis of the contribution of black carbon BC and BrC to light absorption revealed that BrC could account for over 15% of the total absorption at 370 nm. According to the potential source contribution function model (PSCF) classification, CAs with strong light absorption in urban Shanghai originated not only from highly polluted inland China but also from active marine ship emissions.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hollín/análisis
5.
J Environ Sci (China) ; 114: 354-364, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459498

RESUMEN

To investigate particle characteristics and find an effective measure to control severe particle pollution, year-round observation of size-segregated inorganic aerosols was conducted in Beijing from January to December, 2016. The sampled atmospheric particles all presented bimodal size distribution at four pollution levels (clear, slight pollution, moderate pollution and severe pollution), and peak values appeared at the size range of 0.7-2.1 µm and >9.0 µm, respectively. As dominant particle compositions, NO3-, SO42-, and NH4+ in four pollution levels all showed significant peaks in fine mode, especially at the size range of 1.1-2.1 µm. Secondary inorganic aerosols accounted for about 67.6% (36.3% (secondary sulfates) + 31.3% (secondary nitrates)) of the total sources of fine particles in urban Beijing. Severe pollution of fine particles was mainly caused by the air masses transported from nearby western and southern areas, which are industrial and densely populated region, respectively. Sensitivity tests further revealed that the control measures focusing on ammonium emission reduction was the most effective for particle pollution mitigation, and fine particles all showed nonlinear responses after reducing ammonium, nitrate, and sulfate concentrations, with the fitting curves of y = -120.8x - 306.1x2 + 290.2x3, y = -43.5x - 67.8x2, and y = -25.8x - 110.4x2 + 7.6x3, respectively (y and x present fine particle mass variation (µg/m3) and concentration reduction ratio (CRR)/100 (dimensionless)). Overall, our study presents useful information for understanding the characteristics of atmospheric inorganic aerosols in urban Beijing, as well as offers policy makers with effective measure for mitigating particle pollution.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Compuestos de Amonio/análisis , Beijing , China , Monitoreo del Ambiente , Nitratos/análisis , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Sulfatos/análisis
6.
Bull Environ Contam Toxicol ; 108(1): 129-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34652458

RESUMEN

In this study, pot-culture experiments were conducted to investigate the single effect of Cd, PCBs, and the combined effect of Cd-PCBs with Tagetes patula L. The study highlights that the minimum concentration of PCBs (100 µg kg-1) could enable the growth of the plant with an increase in biomass by 27.76% when compared with the control. In all the experiments performed, the Cd concentrations over the surface parts were found to be above 100 mg kg-1. Significant positive correlations were observed between the Cd and PCBs concentrations accumulated in tissues of the soil and plants (p < 0.05). T. patula exhibited high tolerance to Cd and PCBs, and the plant promoted the removal rate of PCBs. The removal rates of PCB18 and PCB28 were up to 42.72 and 42.29%, respectively. The study highlights the potential and suitability of T. patula for phytoremediation of Cd and PCBs in contaminated soils.


Asunto(s)
Bifenilos Policlorados , Contaminantes del Suelo , Tagetes , Biodegradación Ambiental , Cadmio/análisis , Suelo , Contaminantes del Suelo/análisis
8.
Environ Sci Technol ; 55(14): 9794-9804, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34235924

RESUMEN

Particulate nitrite is a critical source of hydroxyl radicals; however, it lacks high-resolution methods due to its low abundance and stability to explore its formation mechanism. In this study, a modified versatile aerosol concentration enrichment system (VACES) coupled with ion chromatography (IC) was used to measure particulate NO2- hourly online and achieve a lowered detection limit of 10-3 µg m-3. VACES-IC was used to observe a high- and low-concentration events of PM1.0-NO2- in Shanghai, corresponding to the ambient-level concentrations of 0.34 and 0.05 µg m-3, respectively. The morning peak concentrations of NO2- even exceeded 3σ (standard deviation) in the high-concentration event due to the reduction of NO2 by aerosol SO32- based on kinetics and regression analysis. This implies that controlling SO2 emissions would be an effective strategy to decrease morning NO2- concentrations, correspondingly reducing the kinetic formation of SO42- by 20.8-34.8%. However, after sunrise, NO2- formation was primarily attributed to NO2 hydrolysis at pH 4.97-6.14. In the low-concentration event, NO2 hydrolysis also accounted for an overwhelming proportion (∼90%) of NO2- formation. This work estimates the contribution of different paths to particulate NO2- formation based on newly established high-resolution measurements.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Cromatografía , Monitoreo del Ambiente , Nitritos/análisis , Material Particulado/análisis
10.
Toxicology ; 458: 152837, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34166751

RESUMEN

Decabromodiphenyl ether (BDE209) has been widely used as a flame retardant in the past four decades, leading to human health consequences, especially neurological impairments. Our previous in vivo studies have suggested that developmental neurotoxicity in offspring may be the result of BDE209-induced placental type III iodothyronine deiodinase (Dio3) disturbance and consequent thyroid hormone (TH) instability. Dio3 is paternally imprinted gene, and its balanced expression is crucial in directing normal development and growth. In this study, we used placenta-derived cells to investigate how BDE209 affected Dio3 expression through interfering imprinting mechanisms in the delta-like homolog 1 (Dlk1)-Dio3 imprinted region. Gene chip analysis and RT-qPCR identified miR409-3p, miR410-5p, miR494-3p, miR668-3p and miR889-5p as potential candidates involved in Dio3 deregulation. The sodium bisulfite-clonal sequencing revealed the BDE209 affect methylation status of two differentially methylated regions (DMRs), intergenic-DMR (IG-DMR) and maternally expressed gene 3-DMR (MEG3-DMR). Our data indicate that placental Dio3 may be a potential molecular target for future study of BDE209 developmental toxicity. In particular, miRNAs, IG-DMR and MEG3-DMR in the Dlk1-Dio3 imprinted locus may be informative in directing studies in TH disturbance and developmental toxicity induced by in utero exposure to environmental persistent organic pollutants (POPs), and those candidate miRNAs may prove to be convenient and noninvasive biomarkers for future large-scale population studies.


Asunto(s)
Proteínas de Unión al Calcio/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Yoduro Peroxidasa/efectos de los fármacos , Proteínas de la Membrana/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Hormonas Tiroideas/metabolismo , Línea Celular Tumoral , Metilación de ADN , Relación Dosis-Respuesta a Droga , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , MicroARNs/metabolismo , Embarazo , Transfección
11.
Sci Total Environ ; 789: 147956, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052493

RESUMEN

Severe volatile organic compound (VOC) pollution has become an urgent problem during the heating season in the North China Plain (NCP), as exposure to hazardous VOCs can lead to chronic or acute diseases. A campaign with online VOC measurements was conducted at a rural site in Wangdu, NCP during the 2018 heating season to characterize the compositions and associated sources of VOCs and to assess their potential health risks. The total concentration of VOCs with 94 identified species was 77.21 ± 54.39 ppb. Seven source factors were identified by non-negative matrix factorization, including coal combustion (36.1%), LPG usage (21.1%), solvent usage (13.9%), biomass burning and secondary formation (14.2%), background (7.0%), industrial emissions (4.5%), and vehicle emissions (3.3%). The point estimate approach and Monte Carlo simulation were used to estimate the carcinogenic and non-carcinogenic risks of harzadous VOCs. The results showed that the cumulative health risk of VOCs was above the safety level. Acrolein, 1.2-dichloroethane, 1,2-dichloropropane, chloroform, 1,3-butadiene, and benzene were identified as the key hazardous VOCs in Wangdu. Benzene had the highest average carcinogenic risk. Solvent usage and secondary formation were the dominant sources of adverse health effects. During the Spring Festival, most sources were sharply reduced; and VOC concentration declined by 49%. However, coal and biomass consumptions remained relatively large, probably due to heating demand. This study provides important references for the control strategies of VOCs during the heating season in heavily polluted rural areas in the NCP.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Calefacción , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis
12.
J Hazard Mater ; 416: 125820, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33887570

RESUMEN

Commodity plastic is ubiquitous in daily life and commonly disposed of via unregulated burning, particularly in developing regions. We report here the much higher emission factors (13.1 ± 7.5 g/kg) and toxicities of inhalable aerosols emitted from the unregulated burning of plastic waste based on field measurements and cellular experiments, including oxidative stress and cytotoxic tests in A549 cells. Plastic foam burning emitted aerosols possesses the highest EFs (34.8 ± 4.5 g/kg) and toxicities, which are 4.2- to 13.4-fold and 1.1- to 2.7-fold higher than those emitted from the burning of other waste types. These quantified toxicities are mainly attributed to aerosols containing carbonaceous matter, especially persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins, which originate from incomplete combustion processes. The aerosol emission amounts were estimated from the obtained experimental results. Approximately 70.2 million tons (29%) of plastic waste was burned without regulation worldwide in 2016, leading to 0.92 ± 0.53 million tons of toxic aerosols being released into the air, a majority of which occurred in developing regions. The results indicate improved combustion technology and control strategies are urgently needed in developing regions for discarded plastic -waste to mitigate toxic exposure risks and achieve sustainable development.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente , Material Particulado/análisis , Plásticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis
13.
Talanta ; 224: 121867, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379077

RESUMEN

Acute toxicity assay presents vital significance in modern environmental monitoring, including online detection and in-situ assay for emergency events. Although photobacteria related detection methods were established and verified in the past decades with combination of photomultiplier tube (PMT), the price and size of PMT sensor hampered application of rapid acute toxicity assay and detection system miniaturization, especially in the resource-limited occasions. Wide application of smartphones with great low-light performance cameras could be used in photobacteria-based toxicity assay instead of the PMT methods. Herein a box-type portable detection system had been successfully established, including a disc-chip for detection, detection device, and smartphones with a high-performance camera. The system performed well showing stable temperature and rotation control. Results captured by CMOS-based camera presented a linear relationship with PMT-based detection method. An image progress algorithm was also established and tested by series diluted zinc sulfate solution as a reference substance. The system also performed well for toxicity analysis for real Atmospheric particle matter sample. The system could be used in some environmental monitoring scenarios as an alternative solution.


Asunto(s)
Teléfono Inteligente , Miniaturización
14.
Environ Pollut ; 266(Pt 2): 115163, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32682020

RESUMEN

Measuring isotopic ratios in aerosol particles is a powerful tool for identifying major sources, particularly in separating fossil from non-fossil sources and investigating aerosol formation processes. We measured the radiocarbon, stable carbon, and stable nitrogen isotopic composition of PM2.5 in Beijing (BJ) and Changdao (CD) in the North China Plain (NCP) from May to mid-June 2016. The mean PM2.5 concentrations were 48.6 ± 28.2 µg m-3 and 71.2 ± 29.0 µg m-3 in BJ and CD, respectively, with a high contribution (∼66%) from secondary inorganic aerosol (SIA; NO3-, NH4+, and SO42-). The mean δ13C of total carbon (TC) and δ15N of total nitrogen (TN) values differed significantly between the two sites (p-value of <0.001): -25.1 ± 0.3‰ in BJ and -24.5 ± 0.4‰ in CD and 10.6 ± 1.8‰ in BJ and 5.0 ± 3.1‰ in CD, respectively. In BJ, the average δ15N (NH4+) and δ15N (NO3-) values were 12.9 ± 2.3‰ and 5.2 ± 3.5‰, respectively. The ionic molar ratios and isotopic ratios suggest that NO3- in BJ was formed through the phase-equilibrium reaction of NH4NO3 under sufficient NH3 (g) conditions, promoted by fossil-derived NH3 (g) transported with southerly winds. In BJ, fossil fuel sources comprised 52 ± 7% of TC and 45 ± 28% of NH4+ on average, estimated from radiocarbon (14C) analysis and the δ15N and isotope mixing model, respectively. These multiple-isotopic composition results emphasize that PM2.5 enhancement is derived from fossil sources, in which vehicle emissions are a key contributor. The impact of the coal source was sporadically noticeable. Under regional influences, the fossil fuel-driven SIA led to the PM2.5 enhancements. Our findings demonstrate that the multiple-isotope approach is highly advantageous to elucidate the key sources and limiting factors of secondary inorganic PM2.5 aerosols.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Aerosoles/análisis , Beijing , Isótopos de Carbono/análisis , China , Monitoreo del Ambiente , Fósiles , Isótopos de Nitrógeno/análisis , Material Particulado/análisis
15.
J Environ Sci (China) ; 95: 210-216, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653182

RESUMEN

The reaction of alkenes with ozone has great effect on atmospheric oxidation, its transient species can produce OH radicals and contribute to the formation of secondary organic aerosols (SOA). In the present study, the reaction of tetramethylethene (TME) with ozone was investigated using self-assembled low temperature matrix isolation system. The TME and ozone were co-deposited on a salt plate at 15 K, and then slowly warmed up the plate. The first transient species primary ozonide (POZ) was detected, indicating that the reaction followed Criegee mechanism. Then POZ began to decompose at 180 K. However, secondary ozonide (SOZ) was not observed according to Criegee mechanism. Probably, Criegee Intermediate (CI) did not react with inert carbonyl of acetone, but with remaining TME formed tetra-methyl epoxide (EPO).


Asunto(s)
Ozono , Acetona , Aerosoles , Alquenos , Oxidación-Reducción
16.
Sci Total Environ ; 720: 137617, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32325589

RESUMEN

The measurement of volatile organic compounds (VOCs) was carried out using an online GC-FID/MS at a rural site in North China Plain from 1 Nov. 2017 to 21 Jan. 2018. Their concentrations, emission ratios and source apportionment are investigated. During the entire experiment period, the average mixing ratio of VOCs was 69.5 ± 51.9 ppb, among which alkanes contributed the most (37% on average). Eight sources were identified in the non-negative matrix factorization (NMF) model as short-chain alkanes (13.3%), biomass burning (4.6%), solvent (10.8%), industry (3.7%), coal combustion (41.1%), background (4.5%), vehicular emission (7.7%) and secondary formation (14.2%). In addition to the formation of OVOCs through photochemical reactions, the primary sources, such as coal combustion, biomass burning, vehicular emission, solvent and industry, can also contribute to OVOCs emissions. High OVOCs emission ratios thus were observed at Wangdu site. Primary emission was estimated to contribute 50%, 45%, 73%, 77%, 40%, and 29% on average to acrolein, acetone, methylvinylketone (MVK), methylethylketone (MEK), methacrolein and n-hexanal according to NMF analysis, respectively, which was well consistent with the contribution from photochemical age method. Secondary organic aerosol formation potential (SOAFP) was evaluated by SOA yield, which was significantly higher under low-NOx condition (13.4 µg m-3 ppm-1) than that under high-NOx condition (3.2 µg m-3 ppm-1). Moreover, the photochemical reactivity and sources of VOCs showed differences in seven observed pollution episodes. Among, the largest OH loss rate and SOAFP were found in severe pollution plumes, which were induced primarily by coal combustion. Therefore, mitigation strategies for severe pollution formation should focus on reducing coal combustion emitted VOCs that lead to SOA formation.

17.
Sci Total Environ ; 691: 1320-1327, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31466211

RESUMEN

The receptor model is an effectively and widely used tool for analyzing the source of PM2.5, and its development and improvement have always been focused and challenged. In this study, approaches of source analysis is applied and compared. The PM2.5 samples were collected in spring of 2015 at a remote background site of Weizhou, South China and were analyzed for water-soluble ions, trace metals, and sugars. The 28 measurement species were introduced into the positive matrix factorization (PMF) and a non-negative matrix factorization (NMF) model for inter-comparison of PM2.5 prediction. Results showed that the NMF model is a more robust tool to identify source types and source apportionment in the case of a small sample size (n = 31). In NMF, four source variants were obtained as dust (15.6%), biomass combustion (11.8%), secondary formation (17.6%), and coal combustion (54.9%), corresponding to four main source areas. These were Southeast Asia, South China Sea, Taiwan Strait, as well as Pearl River Delta, respectively. The areas were distinguished based on hybrid receptor models, potential source contribution function (PSCF) and concentration weighted trajectory (CWT), by introducing the daily loadings of each source factor from NMF method. These model results were highly consistent with categorized chemical characteristics of PM2.5, suggesting that NMF linking with hybrid receptor models provides valuable implications for exploring source types and source areas of PM2.5. Meanwhile, biomass combustion and coal combustion comparably contributed to the high PM2.5 concentrations indicating control strategy in South China in spring.

18.
Adv Exp Med Biol ; 1155: 775-785, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468447

RESUMEN

Thyroid hormones are key hormones involved in growth and development. Changes in their levels can cause embryonic brain developmental damage in the first trimester. Studies have shown that polybrominated diphenyl ethers (PBDEs) have developmental neurotoxicity as environmental pollutants, and exposure during pregnancy can cause irreversible brain damage in offspring, similar to the interference effects of thyroid hormones, but its mechanism has not yet been understood. Since the physiological environment for placental cells is highly hypoxic, in the current study, the human placenta-derived JEG cells were cultured at 1% oxygen, 4% carbon dioxide and 94% nitrogen, to reflect in vivo scenario, and the possible protection of taurine on BDE 209-mediated toxicity in JEG cells was studied. Our data showed that different concentrations of BDE 209 can have profound effects on cell viability and placental deiodinase 3 expression under hypoxic culture condition. Taurine was found to improve BDE 209-induced reductions in cell viability and altered gene and protein expressions of placental deiodinases. The results provide a reference for the establishment of early biomarkers and effective preventive measures.


Asunto(s)
Éteres Difenilos Halogenados/efectos adversos , Yoduro Peroxidasa/metabolismo , Placenta/enzimología , Taurina/farmacología , Hipoxia de la Célula , Línea Celular , Femenino , Humanos , Placenta/citología , Embarazo
19.
Adv Exp Med Biol ; 1155: 847-856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468451

RESUMEN

PBDEs (stands for polybrominated diphenyl ethers) are extensively utilized flame retardants, and BDE 209 is one of the most widely used congeners. Studies have suggested the general toxic effects of PBDEs on the endocrine system and neural development. Our previous studies found that BDE 209 changed Type 3 iodothyronine deiodinase (Dio 3) expression in human SK-N-AS neuroblastoma cells. The current study was designed to examine the potential protection of taurine on alterations of Dio 3 expression induced by BDE 209 in SK-N-AS cells. Briefly, SK-N-AS cells were pretreated with taurine prior to the BDE 209 treatment, and the cell viability was evaluated by the MTT (methyl-thiazolyl-tetrazolium) assay. The disturbance or restoration in the levels of Dio 3 proteins and mRNA were observed separately by the western blot and qRT-PCR. Our data showed that taurine moderately attenuated BDE 209-mediated the loss of cell viability. Also, taurine moderately prevented the reduction in the Dio 3 protein expression and mRNA expression induced by BDE 209 in the SK-N-AS cells. Our findings indicated that taurine potentially provide the protection on PBDEs-induced toxicity on endocrine and neuro-development.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Taurina/farmacología , Línea Celular Tumoral , Supervivencia Celular , Retardadores de Llama , Éteres Difenilos Halogenados/efectos adversos , Humanos , Neuroblastoma
20.
Adv Exp Med Biol ; 1155: 949-958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468459

RESUMEN

Taurine is an important amino acid for the growth and development of the central nervous system and plays an important role in the development of the nervous system. Many studies have shown that taurine can prevent and repair neurodevelopmental damage, and its mechanism has also become a research hotspot. While most studies focus on nerve cells, less on placental cells that are closely related to early neurodevelopment (developmental neurotoxicity) by modulating fetal circulation level of thyroid hormones. Studies have shown that exposure of placental cells to the common environmental endocrine disruptor BDE 209 during early pregnancy may lead to developmental neurotoxicity due to thyroid hormone interference caused by abnormal expression of deiodinases. Therefore, in this study, the placenta-derived JEG cells cultured at 95% air/5% CO2 was used as a in vitro model, and the potential protection from taurine on BDE 209-mediated cytotoxicity was examined. When BDE 209 was found to cause a decrease in cell viability and disturbance in the gene and protein expressions of placental deiodinase 3, pretreatment of the JEG cells with taurine can moderately reduce the BDE 209-meditated cytotoxicity, and restore gene and protein expressions of placental deiodinase, so that thyroid hormone levels tend to be normal in cell culture medium. Our data suggest that taurine may have some protection on the developmental neurotoxicity caused by BDE 209.


Asunto(s)
Éteres Difenilos Halogenados/efectos adversos , Yoduro Peroxidasa/metabolismo , Placenta/citología , Taurina/farmacología , Línea Celular , Supervivencia Celular , Disruptores Endocrinos , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...