Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129770, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302028

RESUMEN

Via rational molecular structure design and using gallic acid (GA) for hydrophobic modification of cellulose nanofibers (CNF), the "polymer dipole" CNF-GA with hydrophilic main chains and hydrophobic side chains was prepared, which improved the poor piezoelectric properties of CNF used for preparing pressure sensors. Due to the appearance of the side chains, the elongation at break of the CNF-GA-2, compared with CNF, was enhanced by 186 %, and the excellent tensile strength, puncture load, and tearing strength were displayed. Moreover, the significant glass transition temperature (Tg) near the human body temperature was exhibited for CNF-GA, making it possible to be applied in temperature sensing. Most importantly, the CNF-GA-2 showed the maximum hydrophobicity, with a contact angle of 76.77°. Finally, the CNF-GA-2/MXene nanocomposite film was prepared by the CNF-GA-2 with MXene through vacuum filtration. The results indicated that the film had excellent piezoelectric properties (d33 = 63.283), the generated stable induced voltage (125.6 mV), the preferable piezoresistive performance (ΔR/R0 = 2.15), the fast response/recovery time (48/61 ms), which could achieve dynamic and static responses. Moreover, this film could be used for real-time detection of limb movements (such as wrists).


Asunto(s)
Celulosa , Nanofibras , Nitritos , Elementos de Transición , Humanos , Celulosa/química , Nanofibras/química , Polímeros , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas
2.
Phys Chem Chem Phys ; 25(33): 21908-21915, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37581209

RESUMEN

Vanadium dioxide (VO2) exhibits the most abrupt metal-to-insulator transition (MIT) property near room temperature among the representative 3d-orbital correlated oxides, and its structural variation during the MIT usually results in poor mechanical properties as bulk pellets. Moreover, compositing with highly resistive oxides has been reported to improve the mechanical strength of bulk VO2 since the generation and propagation of microcracks is suppressed upon thermocycling across the MIT; further, their respective impacts on electrical transportation are yet unclear. Herein, we demonstrate the role of these highly resistive oxide composites (e.g., HfO2, CoO and Al2O3) in reducing charge leakage along the microcracks within the insulating phase of VO2, leading to more abrupt MIT properties from the perspective of electrical transportation. This enables the possibility of simultaneously regulating the critical temperature and abrupt MIT transition, as well as the mechanical properties of the VO2 bulk pellets via compositing with oxides with different melting points using spark plasma-assisted reactive sintering (SPARS).

3.
Langmuir ; 37(36): 10708-10719, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34450019

RESUMEN

Slippery liquid-infused porous surfaces (SLIPSs) have attracted wide interest with regard to their excellent liquid repellency properties and broad applications in various fields associated with anti-adhesion. However, the preparation processes depending on the chemical properties of the substrate and the poor stability of the lubricant layer hinder the practical applications. In this work, a facile method to fabricate SLIPSs based on the mussel-inspired polydopamine (PDA)-mediated nanosilica structures is demonstrated. A variety of substrates can be decorated with SLIPSs by successive treatment of PDA-assisted sol-gel process, fluorination, and lubricant filling. The robust uniform and nanotextured silica coating, mediated by the pre-adhered PDA layer, shows enhanced lubricant-locking ability even when subjected to increased evaporation and high shear from flowing water or spinning compared with hierarchical silica rough structures. The obtained SLIPSs exhibit high transparency and excellent resistance against adhesion of liquid/solid contaminants and biofoulings through this pre-adhesion of PDA strategy. The well-defined nanosilica coating of high decoration covering micron-scaled pore walls enables improved durability of the slippery surfaces for antifouling of the porous membrane under pressure-driven filtration and this may be employed as a potential candidate for fouling resistance of porous materials.


Asunto(s)
Lubricantes , Dióxido de Silicio , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...