Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 853: 158770, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36108859

RESUMEN

Inhaled particulate matter is associated with nasal diseases such as allergic rhinitis, rhinosinusitis and neural disorders. Its health risks on humans are usually evaluated by measurements on monkeys as they share close phylogenetic relationship. However, the reliability of cross-species toxicological extrapolation is in doubt due to physiological and anatomical variations, which greatly undermine the reliability of these expensive human surrogate models. This study numerically investigated in-depth microparticle transport and deposition characteristics on human and monkey (Macaca fuscata) nasal cavities that were reconstructed from CT-images. Deposition characteristics of 1-30µm particles were investigated under resting and active breathing conditions. Similar trends were observed for total deposition efficiencies and a single correlation using Stokes Number was fitted for both species and both breathing conditions, which is convenient for monkey-human extrapolation. Regional deposition patterns were carefully compared using the surface mapping technique. Deposition patterns of low, medium and high inertial particles, classified based on their total deposition efficiencies, were further analyzed in the 3D view and the mapped 2D view, which allows locating particle depositions on specific nasal regions. According to the particle intensity contours and regional deposition profiles, the major differences were observed at the vestibule and the floor of the nasal cavity, where higher deposition intensities of medium and high inertial particles were shown in the monkey case than the human case. Comparisons of airflow streamlines indicated that the cross-species variations of microparticle deposition patterns are mainly contributed by two factors. First, the more oblique directions of monkey nostrils result in a sharper airflow turn in the vestibule region. Second, the monkey's relatively narrower nasal valves lead to higher impaction of medium and high inertial particles on the nasal cavity floor. The methods and findings in this study would contribute to an improved cross-species toxicological extrapolation between human and monkey nasal cavities.


Asunto(s)
Cavidad Nasal , Material Particulado , Animales , Humanos , Cavidad Nasal/fisiología , Tamaño de la Partícula , Administración por Inhalación , Haplorrinos , Filogenia , Reproducibilidad de los Resultados , Simulación por Computador
2.
J Aerosol Sci ; 162: 105943, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034977

RESUMEN

Social distance will remain the key measure to contain COVID-19 before the global widespread vaccination coverage expected in 2024. Containing the virus outbreak in the office is prioritised to relieve socio-economic burdens caused by COVID-19 and potential pandemics in the future. However, "what is the transmissible distance of SARS-CoV-2" and "what are the appropriate ventilation rates in the office" have been under debate. Without quantitative evaluation of the infection risk, some studies challenged the current social distance policies of 1-2 m adopted by most countries and suggested that longer social distance rule is required as the maximum transmission distance of cough ejected droplets could reach 3-10 m. With the emergence of virus variants such as the Delta variant, the applicability of previous social distance rules are also in doubt. To address the above problem, this study conducted transient Computational Fluid Dynamics (CFD) simulations to evaluate the infection risks under calm and wind scenarios. The calculated Social Distance Index (SDI) indicates that lower humidity leads to a higher infection risk due to weaker evaporation. The infection risk in office was found more sensitive to social distance than ventilation rate. In standard ventilation conditions, social distance of 1.7 m-1.8 m is sufficient distances to reach low probability of infection (PI) target in a calm scenario when coughing is the dominant transmission route. However in the wind scenario (0.25 m/s indoor wind), distance of 2.8 m is required to contain the wild virus type and 3 m is insufficient to contain the spread of the Delta variant. The numerical methods developed in this study provide a framework to evaluate the COVID-19 infection risk in indoor environment. The predicted PI will be beneficial for governments and regulators to make appropriate social-distance and ventilation rules in the office.

3.
Comput Methods Biomech Biomed Engin ; 25(13): 1449-1458, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34913791

RESUMEN

OBJECTIVE: To analyze the effect of different endoscopic endonasal approaches (EEAs) on nasal airflow and heating and humidification in patients with pituitary adenoma (PA) by computational fluid dynamics (CFD). METHODS: A three-dimensional pre-surgical model (Pre) of the nasal cavity and 6 that were post-EEA surgery were created from computed tomography scans as follows: small posterior septectomy (0.5 cm, sPS), middle posterior septectomy (1.5 cm, mPS), large posterior septectomy (2.5 cm, lPS), and sPS with middle turbinate resection (sPS-MTR), mPS-MTR, and lPS-MTR. Simulations were performed by CFD to compare the changes in different models. RESULTS: The temperature in the nasal vestibule rose more rapidly than in other parts of the nasal cavities in all models. There were no apparent differences in temperature and humidity among the models in sections anterior to the middle turbinate head (C6 section). MTR significantly influenced airflow distribution between the bilateral nasal cavities and the different parts of the nasal cavity, while changes in temperature and humidity in each section were mainly affected by MTR. The temperature and humidity of the choana and nasopharynx of each postoperative model were significantly different from those of the preoperative model and the change in values significantly correlated with the surface-to-volume ratio (SVR) of the airway. CONCLUSIONS: Changes due to the different nasal structures caused different effects on nasal function following the use of EEA surgery for the treatment of PA. CFD provided a new approach to assess nasal function, promising to provide patients with individualized preoperative functional assessment and surgical planning.


Asunto(s)
Obstrucción Nasal , Neoplasias Hipofisarias , Simulación por Computador , Humanos , Hidrodinámica , Lipopolisacáridos , Cavidad Nasal/diagnóstico por imagen , Cavidad Nasal/cirugía , Obstrucción Nasal/cirugía , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/cirugía , Cornetes Nasales/cirugía
4.
Comput Biol Med ; 141: 105129, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915333

RESUMEN

In this study, we present a detailed flow analysis using an anatomically accurate rat nasal cavity model, in which the anatomy and physiology of the nasal airway was thoroughly examined. Special efforts were given to the swirling flow structures in the nasal vestibule (anterior section of the nose, lined by squamous epithelium), fractional flow patterns in the olfactory (posterior superior section of the rat nose, lined by olfactory epithelium), and a designated method to precisely quantify flow apportionment in the olfactory region was developed. Results revealed distinct inspiratory flow patterns in the anterior vestibule region, where the accelerated airflow undergoes two sharp turns as traveling through the tortuous airway, making a route in a shape of 8. Besides this, exceptionally large flow apportionment was observed at the interface of the olfactory recess, which can be as much as 15 times greater than that in the human nose. The thorough understanding of the airflow dynamics in the rat nasal cavity is necessary to avoid potential misinterpretation of rat-derived inhalation toxicity results. Research findings are expected to play a fundamental role in developing unbiased rat to human interspecies data extrapolation schemes.


Asunto(s)
Cavidad Nasal , Mucosa Olfatoria , Administración por Inhalación , Animales , Cavidad Nasal/fisiología , Nariz/fisiología , Mucosa Olfatoria/fisiología , Ratas , Olfato/fisiología
5.
Comput Biol Med ; 141: 105150, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942396

RESUMEN

Nonhuman primates are occasionally used as laboratory models for sophisticated medical research as they bear the closest resemblance to humans in morphometry and physiological functions. A range of nonhuman primate species have been employed in the inhalation toxicity, nasal drug delivery and respiratory viral infection studies, and they provided valuable insight to disease pathogenesis while other laboratory animals such as rodents cannot recapitulate due to the lesser degree of similarity in metabolism, anatomy and cellular response to that of humans. It is anticipated that nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health, and the confidence in laboratory data extrapolation between species will play a pivotal role. From the morphometry and flow dynamics point of view, this study performed a detailed comparative analysis between human and a cynomolgus monkey nasal airway, with intention to provide high-fidelity qualitative and quantitative linkage between the two species for more effective laboratory data extrapolation. The study revealed that cynomolgus monkey could be a good human surrogate in nasal inhalation studies; however, care should be given for interspecies data extrapolation as subtle differences in anatomy and airflow dynamics were present between the two species.


Asunto(s)
Cavidad Nasal , Administración por Inhalación , Animales , Humanos , Macaca fascicularis , Cavidad Nasal/fisiología
6.
Int J Numer Method Biomed Eng ; 38(3): e3565, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913265

RESUMEN

As a primary determinant of nasal physiological functions, the nasal morphology and its effects on the airflow dynamics have been extensively studied in literature. However, gross flow features reported in literature are mostly obtained from subjects at similar ages, while studies focusing on nasal subjects with distinct age differences are significantly less. To advance current understandings of nasal airflow dynamics in the context of age diversity, this study employed three anatomically accurate nasal cavity models with distinct age features (5-, 24- and 77-year-old models) and numerically compared the physiological nasal airflow fields within these nasal cavity models. To demonstrate the validity of the present numerical models, in vivo rhinomanometry measurement was conducted on the 24-year-old female nasal model, and key anatomical features and pressure-flow curves of all three models were compared with models with similar age features in literature work. Apart from results comparison based on conventional velocity flow fields and wall shear stress distributions, a method for quantifying flow partitions in confined airway spaces was developed to reveal the proportions of fractional flow that enters the olfactory region. Our results revealed dramatic intersubject discrepancies between considered nasal cavity models, especially for the fractional flow that enters the olfactory region. Specifically, the 5-year-old girl nasal model received the highest proportion of fractional flow, which accounts for 13.3% ~ 15% of overall inhalation flow rates under different activity levels. For the 24-year-old female model, on the contrary, the olfactory fractional flow was dramatically reduced (with a local to overall percentage around 4.3%-7.7%). Finally, for the elderly subject-77-year-old male model, minimum level of olfactory flux was observed with a local to overall percentage ranging between 3.1% and 4.9% for considered wide range of inhalation flow rates. Therefore, the local flow intersubject variation can reach nearly fourfold. The vast local flow difference is mainly due to the inherent anatomical features (e.g., immature nasal turbinate structure in the child model, the partial narrowing superior nasal valve in the elder model). The results may further lead to discrepant health effects associated with inhalation exposure to airborne particles.


Asunto(s)
Cavidad Nasal , Cornetes Nasales , Adulto , Anciano , Niño , Preescolar , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cavidad Nasal/fisiología , Fenómenos Fisiológicos Respiratorios , Adulto Joven
7.
Respir Physiol Neurobiol ; 294: 103769, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34352383

RESUMEN

Middle turbinate resection significantly alters the anatomy and redistributes the inhaled air. The superior half of the main nasal cavity is opened up, increasing accessibility to the region. This is expected to increase inhalation dosimetry to the region during exposure to airborne particles. This study investigated the influence of middle turbinate resection on the deposition of inhaled pollutants that cover spherical and non-spherical particles (e.g. pollen). A computational model of the nasal cavity from CT scans, and its corresponding post-operative model with virtual surgery performed was created. Two constant flow rates of 5 L/min, and 15 L/min were simulated under a laminar flow field. Inhaled particles including pollen (non-spherical), and a spherical particle with reference density of 1000 kg/m3 were introduced in the surrounding atmosphere. The effect of surgery was most prominent in the less patent cavity side, since the change in anatomy was proportionally greater relative to the original airway space. The left cavity produced an increase in particle deposition at a flow rate of 15 L/min. The main particle deposition mechanisms were inertial impaction, and to a lesser degree gravitational sedimentation. The results are expected to provide insight into inhalation efficiency of different aerosol types, and the likelihood of deposition in different nasal cavity surfaces.


Asunto(s)
Aerosoles , Hidrodinámica , Inhalación/fisiología , Modelos Teóricos , Cavidad Nasal , Polen , Cornetes Nasales/cirugía , Humanos , Material Particulado
8.
Respir Physiol Neurobiol ; 293: 103719, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34147672

RESUMEN

Nasal adhesions are a known postoperative complication following surgical procedures for nasal airway obstruction (NAO); and are a common cause of surgical failure, with patients often reporting significant NAO, despite relatively minor adhesion size. Division of such nasal adhesions often provides much greater relief than anticipated, based on the minimal reduction in cross-sectional area associated with the adhesion. The available literature regarding nasal adhesions provides little evidence examining their quantitative and qualitative effects on nasal airflow using objective measures. This study examined the impact of nasal adhesions at various anatomical sites on nasal airflow and mucosal cooling using computational fluid dynamics (CFD). A high-resolution CT scan of the paranasal sinuses of a 25-year-old, healthy female patient was segmented to create a three-dimensional nasal airway model. Virtual nasal adhesions of 2.5 mm diameter were added to various locations within the nasal cavity, representing common sites seen following NAO surgery. A series of models with single adhesions were created. CFD analysis was performed on each model and compared with a baseline no-adhesion model, comparing airflow and heat and mass transfer. The nasal adhesions resulted in no significant change in bulk airflow patterns through the nasal cavity. However, significant changes were observed in local airflow and mucosal cooling around and immediately downstream to the nasal adhesions. These were most evident with anterior nasal adhesions at the internal valve and anterior inferior turbinate. Postoperative nasal adhesions create local airflow disruption, resulting in reduced local mucosal cooling on critical surfaces, explaining the exaggerated perception of nasal obstruction. In particular, anteriorly located adhesions created greater disruption to local airflow and mucosal cooling, explaining their associated greater subjective sensation of obstruction.


Asunto(s)
Hidrodinámica , Modelos Biológicos , Mucosa Nasal/fisiopatología , Enfermedades Nasales/fisiopatología , Adherencias Tisulares/fisiopatología , Adulto , Femenino , Humanos , Temperatura
9.
PLoS One ; 16(1): e0246007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33507973

RESUMEN

Evaluation of nasal spray drug absorption has been challenging because deposited particles are consistently transported away by mucociliary clearance during diffusing through the mucus layer. This study developed a novel approach combining Computational Fluid Dynamics (CFD) techniques with a 1-D mucus diffusion model to better predict nasal spray drug absorption. This integrated CFD-diffusion approach comprised a preliminary simulation of nasal airflow, spray particle injection, followed by analysis of mucociliary clearance and drug solute diffusion through the mucus layer. The spray particle deposition distribution was validated experimentally and numerically, and the mucus velocity field was validated by comparing with previous studies. Total and regional drug absorption for solute radius in the range of 1 - 110nm were investigated. The total drug absorption contributed by the spray particle deposition was calculated. The absorption contribution from particles that deposited on the anterior region was found to increase significantly as the solute radius became larger (diffusion became slower). This was because the particles were consistently moved out of the anterior region, and the delayed absorption ensured more solute to be absorbed by the posterior regions covered with respiratory epithelium. Future improvements in the spray drug absorption model were discussed. The results of this study are aimed at working towards a CFD-based integrated model for evaluating nasal spray bioequivalence.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Depuración Mucociliar/efectos de los fármacos , Rociadores Nasales , Aerosoles , Humanos , Hidrodinámica
10.
J Aerosol Sci ; 154: 105745, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33456070

RESUMEN

Inhaled viral droplets may immediately be expelled and cause an escalating re-transmission. Differences in the deposition location of inhaled viral droplets may have a direct impact on the probability of virus expelling. This study develops a numerical model to estimate the region-specific deposition fractions for inhalable droplets (1-50 µ m) in respiratory airways. The results identified a higher deposition fraction in the upper airways than the lower airways. Particularly for droplets larger than 10 µ m, the relatively high deposition fraction in the oral/laryngeal combined region warns of its easy transmission through casual talking/coughing. Moreover, considering droplet sizes' effect on virus loading capacity, we built a correlation model to quantify the potential of virus expelling hazards, which suggests an amplified cascade effect on virus transmission on top of the existing transmission mechanism. It therefore highlights the importance of considering the instant expelling possibilities from inhaled droplets, and also implies potentials in restricting a rapid secondary transmission by measures that can lower down droplet deposition in the upper airways.

11.
NanoImpact ; 22: 100322, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-35559979

RESUMEN

Olfactory pathway as a viable route for brain uptake of environmental pollutants has been hypothesized in past decade. In such a hypothesis, subclinical low-dose exposure and chronic brain accumulation of exogenous airborne agents are critical to define neurodegenerations, however the information is extremely lacking. Advances in granular measurement of air pollutants, real-time personal exposure monitoring and big data analytics have opened-up an unprecedented opportunity to enable researchers conduct longitudinal investigation and potentially link the external environment condition to risks of human developing neurodegenerative diseases in a foreseeable future. Detailed case studies are provided in this work that illustrate the quantification of human brain accumulation of ultrafine particles (UFPs) from exposure, surface deposition, and pathway penetration via the transport route of nasal olfactory in prolonged timespans. The study links the individual components along the olfactory pathway, showcases the available research capacity, and pinpoints the critical areas of research need in environmental, toxicological and epidemiological studies, significant to a joint effort to bring together an interdisciplinary solution to uncover the insight of time course and dose dependency between environmental exposure and risk of developing neurodegenerative diseases in a foreseeable future. It should be noted that current study assumes that nanoparticle penetration along the olfactory pathway is unidirectional and follows the rate observed in the rodent study. Tissue responses in determining the penetration and retention corresponding to size and composition of the inhaled nanoparticles are not considered.


Asunto(s)
Vías Olfatorias , Material Particulado , Encéfalo/metabolismo , Humanos , Tamaño de la Partícula , Material Particulado/metabolismo , Proyectos Piloto
12.
Clin Biomech (Bristol, Avon) ; 81: 105237, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33272646

RESUMEN

BACKGROUND: The aim of this study was to use computational fluid dynamics (CFD) to investigate the effects on nasal heat exchange and humidification of two different surgical techniques for reducing the inferior turbinate under different environmental conditions. METHODS: Virtual surgery using two techniques of turbinate reduction was performed in eight nasal airway obstruction patients. Bilateral nasal airway models for each patient were compared: 1) Pre-operative 2) Post inferior turbinoplasty 3) Post total inferior turbinate resection (ITR). Two representative healthy models were included. Three different environmental conditions were investigated 1) ambient air 2) cold, dry air 3) hot, humid air. CFD modelling of airflow and conditioning was performed under steady-state, laminar, inspiratory conditions. FINDINGS: Nasal conditioning is significantly altered following inferior turbinate reduction surgery, particularly with ITR under cold, dry inspired air (CDA). The degree of impairment is minor under the simulated range of environmental conditions (temperature = 12-40 °C; relative humidity = 13-80%). Streams of significantly colder air are found in the nasopharynx and more prevalent under CDA in ITR. These are related to high velocity flow streams, which remain cool in their centre throughout the widened inferior nasal cavity. INTERPRETATION: Reduced air-mucosal heat exchange and moisture carrying capacity occurs under cooler temperatures in patients following inferior turbinate surgery. The clinical impact in extremely cold and dry conditions in groups with poor baseline respiratory function, respiratory illness, or endurance athletes is of special interest.


Asunto(s)
Aire , Simulación por Computador , Hidrodinámica , Cavidad Nasal/fisiología , Cornetes Nasales/cirugía , Adulto , Femenino , Humanos , Masculino , Obstrucción Nasal/cirugía , Respiración , Temperatura , Cornetes Nasales/fisiología
13.
Comput Biol Med ; 116: 103573, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999554

RESUMEN

Optimizing intranasal distribution and retention of topical therapy is essential in the management of patients with chronic rhinosinusitis, including those that have had functional endoscopic sinus surgery (FESS). Computational fluid dynamics analysis has not previously been used to investigate sinus nasal spray delivery in the complete post-operative sinonasal geometries of patients who have undergone FESS. Models of sinonasal cavities were created from postoperative magnetic resonance imaging scans in four patients, three of whom underwent a comprehensive FESS, the other a modified endoscopic Lothrop procedure. Spray simulations were conducted at different flow rates (5 L/min, 10 L/min and 15 L/min) using sixteen particle sizes ranging from 4 µm to 70µm, spray velocity of 10 m/s and plume angle of 15°. Two different spray insertion angles were compared. Airflow distribution in the sinuses was closely related to the patient's nasal geometry and surgical intervention, in particular a unique crossflow between nasal chambers was present for the Lothrop patient. Sinus deposition was generally more effective with inhalational transport of low-inertia particles outside of the range produced by many standard nasal sprays or nebulizer. This was true except in the Lothrop patient, since previous surgery had been performed removing most of the septum where high-inertia particles would normally deposit. For sinuses receiving minimal airflow, particle penetration was diminished and successful deposition in the region became more restricted by device parameters. Further research is needed to validate these findings and explore other spray variables in a wider spectrum of patients to ascertain a multi-level approach to optimizing drug delivery in the sinuses.


Asunto(s)
Senos Paranasales , Sinusitis , Simulación por Computador , Endoscopía , Humanos , Cavidad Nasal , Senos Paranasales/diagnóstico por imagen , Senos Paranasales/cirugía , Sinusitis/diagnóstico por imagen , Sinusitis/cirugía
14.
Int Forum Allergy Rhinol ; 10(1): 29-40, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691535

RESUMEN

BACKGROUND: Nasal saline irrigation has become standard of care in various sinonasal conditions, including allergic and nonallergic rhinitis, chronic rhinosinusitis, and in the postoperative patient. Evidence regarding the mechanisms and dynamics of liquid flow through the sinonasal cavity remains limited due to inadequate experimental models (cadaveric, 3-dimensional [3D] printed, imaging of labeled dyes and radioisotopes). We aimed to develop a computational fluid dynamics (CFD) model of nasal irrigation to demonstrate sinonasal surface coverage, residence times across the mucosal surfaces, and shearing force of irrigation. METHODS: A nasal cavity geometry derived from high-resolution paranasal sinus computed tomography (CT) scans of a healthy, unoperated, 25-year-old patient was created. CFD analysis was performed to assess the distribution of nasal irrigation from a tapered nozzle bottle at a forward head-tilt position of 45 degrees with a 2-second burst at 35 mL/second. RESULTS: The model demonstrates nasal irrigation from ipsilateral to contralateral with precise measures of velocity, pressure, wall shear stress, and mapping of surface coverage and residence times at specific locations and times. The nasal cavity experiences almost complete coverage of irrigation, while overflow from the nasal cavity facilitates moderate coverage of the ipsilateral maxillary (40%) and anterior ethmoid sinuses (30%). Negligible coverage of the sphenoid and frontal sinuses was noted. CONCLUSION: Detailed physical mechanisms of liquid irrigation injected from a commonly used squeeze bottle were shown. Ipsilateral maxillary and ethmoid sinus penetration are primarily due to overflow rather than direct jet entry, confirming the recommendation of larger volumes of irrigation to "flood" the sinus ostia.


Asunto(s)
Simulación por Computador , Hidrodinámica , Modelos Biológicos , Lavado Nasal (Proceso) , Adulto , Humanos , Masculino , Cavidad Nasal/anatomía & histología , Cavidad Nasal/diagnóstico por imagen , Cavidad Nasal/fisiología , Senos Paranasales/anatomía & histología , Senos Paranasales/diagnóstico por imagen , Tomografía Computarizada por Rayos X
15.
Inhal Toxicol ; 31(6): 224-235, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31431101

RESUMEN

Aim: Inhaled allergens from house dust mite (HDM) are a major source of allergic disease such as allergic rhinitis and asthma. It has been a challenge to properly evaluate health risks caused by HDM related allergens including mite bodies, eggs and fecal pellets. This paper presents a numerical study on particle deposition of dust mite allergens in a human nasal cavity. Materials and methods: A realistic nasal cavity model was reconstructed from CT scans and a Computational Fluid Dynamics analysis of steady airflow was simulated. The discrete phase model was used to trace particle trajectories of three dust mite related particles. Results: The flow and particle model were validated by comparing with nasal resistance measurement and previous literature respectively. Aerodynamic characteristics and deposition of dust mite allergens in the nasal cavity were analyzed under different breathing conditions including rest and exercising conditions. Conclusions: The numerical results revealed the roles of different nasal cavity regions in filtering various types of dust mite allergens with consideration of breathing conditions.


Asunto(s)
Alérgenos , Antígenos Dermatofagoides , Modelos Anatómicos , Modelos Teóricos , Cavidad Nasal/fisiología , Adulto , Animales , Femenino , Humanos , Hidrodinámica , Exposición por Inhalación , Cavidad Nasal/anatomía & histología , Presión
16.
Int J Numer Method Biomed Eng ; 35(7): e3215, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077567

RESUMEN

The scarcity of regional deposition data in distal respiratory airways represents an important challenge for current toxicology and pharmacology research. To bridge this gap, a realistic airway model extending from nasal and oral openings to distal bronchial airways with varying pathway length was built in this study. Transport and deposition characteristics of naturally inhaled ultrafine particles (UFPs) ranging from 1 to 100 nm were numerically investigated, and effects of different inhalation scenarios were considered. To enable intercase particle deposition comparison, an adjusted parameter, unified deposition enhancement factor (UDEF), was proposed for quantifying the localised deposition concentration. Results show that compartment particle deposition peaked around the ultrafine end of the considered size range, and it dropped rapidly with the increase of particle size. Different inhalation modes caused notable deposition changes in the extrathoracic region, while its effects in the TB airway are much less. For UFPs larger than 10 nm, predicted deposition efficiencies in all compartments are all at lowest levels among considered particle size range, implying UFPs ranging from 10 to 100 nm can travel through the whole respiratory airway model and escape to the alveolar region. Furthermore, high enhancement factors were observed at the vicinity of most bifurcation apexes, and more even UDEF distribution was observed from 1-nm particle cases. While for 100-nm cases, the deposited particles tend to concentrate at few "hot spots" (areas of high deposition concentration in relation to surrounding surfaces) with greater UDEF in the tracheobronchial airway.


Asunto(s)
Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Modelos Biológicos , Material Particulado , Administración Oral , Bronquios/diagnóstico por imagen , Bronquios/fisiología , Humanos , Hidrodinámica , Cavidad Nasal , Material Particulado/administración & dosificación , Reproducibilidad de los Resultados , Fenómenos Fisiológicos Respiratorios , Tomografía Computarizada por Rayos X
17.
Part Fibre Toxicol ; 16(1): 6, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683122

RESUMEN

BACKGROUND: Nose-to-brain transport of airborne ultrafine particles (UFPs) via the olfactory pathway has been verified as a possible route for particle translocation into the brain. The exact relationship between increased airborne toxicant exposure and neurological deterioration in the human central nervous system, is still unclear. However, the nasal olfactory is undoubtedly a critical junction where the time course and toxicant dose dependency might be inferred. METHOD: Computational fluid-particle dynamics modeling of inhaled nanoparticles (1 to 100 nm) under low to moderate breathing conditions (5 to 14 L/min - human; and 0.14 to 0.40 L/min - rat) were performed in physiologically realistic human and rat nasal airways. The simulation emphasized olfactory deposition, and variations in airflow and particle flux caused by the inter-species airway geometry differences. Empirical equations were developed to predict regional deposition rates of inhaled nanoparticles on human and rat olfactory mucosa in sedentary breathing. Considering, breathing and geometric differences, quantified correlations between human and the rat olfactory deposition dose against a variety of metrics were proposed. RESULTS: Regional deposition of nanoparticles in human and the rat olfactory was extremely low, with the highest deposition (< 3.5 and 8.1%) occurring for high diffusivity particles of 1.5 nm and 5 nm, respectively. Due to significant filtering of extremely small particles (< 2 nm) by abrupt sharp turns at front of the rat nose, only small fractions of the inhaled nanoparticles (in this range) reached rat olfactory than that in human (1.25 to 45%); however, for larger sizes (> 3 nm), significantly higher percentage of the inhaled nanoparticles reached rat nasal olfactory than that in human (2 to 32 folds). Taking into account the physical and geometric features between human and rat, the total deposition rate (#/min) and deposition rate per unit surface area (#/min/mm2) were comparable for particles> 3 nm. However, when body mass was considered, the normalized deposition rate (#/min/kg) in the rat olfactory region exceeded that in the human. Nanoparticles < 1.5 nm were filtered out by rat anterior nasal cavity, and therefore deposition in human olfactory region exceeded that in the rat model. CONCLUSION: Regional deposition dose of inhaled nanoparticles in a human and rat olfactory region was governed by particle size and the breathing rate. Interspecies correlation was determined by combining the effect of deposition dosage, physical\geometric features, and genetic differences. Developed empirical equations provided a tool to quantify inhaled nanoparticle dose in human and rat nasal olfactory regions, which lay the ground work for comprehensive interspecies correlation between the two species. Furthermore, this study contributes to the fields in toxicology, i.e., neurotoxicity evaluation and risk assessment of UFPs, in long-term and low-dose inhalation exposure scenarios.


Asunto(s)
Exposición por Inhalación/análisis , Modelos Biológicos , Nanopartículas/metabolismo , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/metabolismo , Animales , Biología Computacional , Relación Dosis-Respuesta a Droga , Humanos , Tamaño de la Partícula , Ratas , Especificidad de la Especie , Distribución Tisular
18.
J Biomech ; 85: 74-83, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30685195

RESUMEN

Intranasal drug delivery has attracted significant attention because of the opportunity to deliver systemic drugs directly to the blood stream. However, the mucociliary clearance poses a challenge in gaining high efficacy of intranasal drug delivery because cilia continuously carry the mucus blanket towards the laryngeal region. To better understand mucus flow behaviour on the human nasal cavity wall, we present computational model development, and evaluation of mucus motion on a realistic nasal cavity model reconstructed from CT-scans. The model development involved two approaches based on the actual nasal cavity geometry namely: (i) unwrapped-surface model in 2D domain and (ii) 3D-shell model. Conservation equations of fluid motion were applied to the domains, where a mucus production source term was used to initiate the mucus motion. The analysis included mucus flow patterns, virtual saccharin tests and quantitative velocity magnitude analysis, which demonstrated that the 3D-shell model results provided better agreement with experimental data. The unwrapped-surface model also suffered from mesh-deformations during the unwrapping stage and this led to higher mucus velocity compared to experimental data. Therefore, the 3D-shell model was recommended for future mucus flow simulations. As a first step towards mucus motion modelling this study provides important information that accurately simulates a mucus velocity field on a human nasal cavity wall, for assessment of toxicology and efficacy of intranasal drug delivery.


Asunto(s)
Hidrodinámica , Modelos Biológicos , Depuración Mucociliar/fisiología , Cavidad Nasal/fisiología , Cilios , Humanos , Moco , Tomografía Computarizada por Rayos X
19.
J Occup Environ Hyg ; 16(4): 273-285, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30668285

RESUMEN

Understanding the inhalation, transport and deposition of smoke particles during fire missions are important to evaluating the health risks for firefighters. In this study, measurements from Underwriters Laboratories' large-scale fire experiments on smoke particle size distribution and concentration in three residential fire scenes were incorporated into models to investigate the fate of inhaled toxic ultrafine particulates in a realistic firefighter nasal cavity model. Deposition equations were developed, and the actual particle dosimetry (in mass, number and surface area) was evaluated. A strong monotonic growth of nasal airway dosages of simulated smoke particles was identified for airflow rates and fire duration across all simulated residential fire scene conditions. Even though the "number" dosage of arsenic in the limited ventilation living room fire was similar to the "number" dosage of chromium in the living room, particle mass and surface area dosages simulated in the limited living room were 90-200 fold higher than that in the ventilated living room. These were also confirmed when comparing the dosimetry in the living room and the kitchen. This phenomenon implied that particles with larger size were the dominant factors in mass and surface area dosages. Firefighters should not remove the self-contained breathing apparatus (SCBA) during fire suppression and overhaul operations, especially in smoldering fires with limited ventilation.


Asunto(s)
Bomberos , Exposición por Inhalación/análisis , Material Particulado/análisis , Humo/análisis , Adulto , Contaminantes Ocupacionales del Aire/análisis , Arsénico , Cromo , Simulación por Computador , Humanos , Masculino , Cavidad Nasal , Exposición Profesional/análisis , Tamaño de la Partícula
20.
Clin Biomech (Bristol, Avon) ; 66: 97-106, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29074148

RESUMEN

BACKGROUND: A major issue among computational respiratory studies is the wide variety of nasal morphologies being studied, caused by both inter-population and inter-subject variations. METHOD: Six nasal cavity geometries exhibiting diverse geometry variations were subjected to steady inhalation flow rate of 15L/min. to determine if any consistent flow behaviour could be found. FINDINGS: Despite vastly different geometries we were able to identify consistent flow patterns including relatively high velocity in the nasal valve region, followed by flow continuing predominantly in the inferior half of the airway. We also found conformity among models where the inhaled air reached a near-conditioned state by the middle of the nasal cavity. Air from the front of the face reached the olfactory regions while air from the lateral sides of the face moved through the inferior half of the nasal cavity. INTERPRETATION: The ability to predict gross flow features provides a baseline flow field to compare against. This contributes towards establishing well defined flow predictions and be used as a comparison for future larger studies.


Asunto(s)
Inhalación , Cavidad Nasal/fisiología , Respiración , Adulto , Simulación por Computador , Humanos , Nariz , Reconocimiento de Normas Patrones Automatizadas , Fenotipo , Estudios Retrospectivos , Temperatura , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...