Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 313, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768771

RESUMEN

BACKGROUND: Plants suffer from various abiotic stresses during their lifetime, of which drought and salt stresses are two main factors limiting crop yield and quality. Previous studies have shown that abscisic acid (ABA) responsive element binding protein (AREB)/ ABRE binding factors (ABFs) in bZIP transcription factors are involved in plant stress response in an ABA-dependent manner. However, little is known about the properties and functions of AREB/ABFs, especially ABF3, in cotton. RESULTS: Here, we reported the cloning and characterization of GhABF3. Expression of GhABF3 was induced by drought,salt and ABA treatments. Silencing of GhABF3 sensitized cotton to drought and salt stress, which was manifested in decreased cellular antioxidant capacity and chlorophyll content. Overexpression of GhABF3 significantly improved the drought and salinity tolerance of Arabidopsis and cotton. Exogenous expression of GhABF3 resulted in longer root length and less leaf wilting under stress conditions in Arabidopsis thaliana. Overexpressing GhABF3 significantly improved salt tolerance of upland cotton by reducing the degree of cellular oxidation, and enhanced drought tolerance by decreasing leaf water loss rate. The increased expression of GhABF3 up-regulated the transcriptional abundance of downstream ABA-inducible genes under salt stress in Arabidopsis. CONCLUSION: In conclusion, our results demonstrated that GhABF3 plays an important role in plant drought and salt tolerance. Manipulation of GhABF3 by biotechnology might be an important strategy to alter the stress resistance of cotton.


Asunto(s)
Arabidopsis , Gossypium , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
2.
Front Plant Sci ; 13: 914140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769288

RESUMEN

Plant height (PH) is a key plant architecture trait for improving the biological productivity of cotton. Ideal PH of cotton is conducive to lodging resistance and mechanized harvesting. To detect quantitative trait loci (QTL) and candidate genes of PH in cotton, a genetic map was constructed with a recombinant inbred line (RIL) population of upland cotton. PH phenotype data under nine environments and three best linear unbiased predictions (BLUPs) were used for QTL analyses. Based on restriction-site-associated DNA sequence (RAD-seq), the genetic map contained 5,850 single-nucleotide polymorphism (SNP) markers, covering 2,747.12 cM with an average genetic distance of 0.47 cM. Thirty-seven unconditional QTL explaining 1.03-12.50% of phenotypic variance, including four major QTL and seven stable QTL, were identified. Twenty-eight conditional QTL explaining 3.27-28.87% of phenotypic variance, including 1 major QTL, were identified. Importantly, five QTL, including 4 stable QTL, were both unconditional and conditional QTL. Among the 60 PH QTL (including 39 newly identified), none of them were involved in the whole period of PH growth, indicating that QTL related to cotton PH development have dynamic expression characteristics. Based on the functional annotation of Arabidopsis homologous genes and transcriptome data of upland cotton TM-1, 14 candidate genes were predicted within 10 QTL. Our research provides valuable information for understanding the genetic mechanism of PH development, which also increases the economic production of cotton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...