Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599092

RESUMEN

Mitigation of nitrous oxide (N2O) emissions in full-scale wastewater treatment plant (WWTP) has become an irreversible trend to adapt the climate change. Monitoring of N2O emissions plays a fundamental role in understanding and mitigating N2O emissions. This paper provides a comprehensive review of direct and indirect N2O monitoring methods. The techniques, strengths, limitations, and applicable scenarios of various methods are discussed. We conclude that the floating chamber technique is suitable for capturing and interpreting the spatiotemporal variability of real-time N2O emissions, due to its long-term in-situ monitoring capability and high data acquisition frequency. The monitoring duration, location, and frequency should be emphasized to guarantee the accuracy and comparability of acquired data. Calculation by default emission factors (EFs) is efficient when there is a need for ambiguous historical N2O emission accounts of national-scale or regional-scale WWTPs. Using process-specific EFs is beneficial in promoting mitigation pathways that are primarily focused on low-emission process upgrades. Machine learning models exhibit exemplary performance in the prediction of N2O emissions. Integrating mechanistic models with machine learning models can improve their explanatory power and sharpen their predictive precision. The implementation of the synergy of nutrient removal and N2O mitigation strategies necessitates the calibration and validation of multi-path mechanistic models, supported by long-term continuous direct monitoring campaigns.


Asunto(s)
Monitoreo del Ambiente , Óxido Nitroso , Aguas Residuales , Óxido Nitroso/análisis , Aguas Residuales/análisis , Aguas Residuales/química , Monitoreo del Ambiente/métodos , Eliminación de Residuos Líquidos/métodos
2.
Environ Sci Pollut Res Int ; 28(41): 58583-58591, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34120283

RESUMEN

Recently, magnesia has drawn much attention for enhancing phosphorus (P) removal of constructed wetlands. However, the poor nitrogen (N) removal efficiency of magnesia-containing constructed wetlands (Mg-CWs) inherently caused by magnesia impedes its application. In this study, peat and intermittent aeration were applied to enhance N removal in a Mg-CW, identified as P-CW and A-CW, respectively. A high TP removal rate (around 90%) was achieved in all CW, and the TN removal rate in the P-CW was 91.05% higher than that in the Mg-CW, which was mainly because the carbon source provided by the peat directly promoted the growth and metabolism of microorganisms and plants. Higher fresh weight of plants was obtained in P-CW (64.94 ± 5.78 g), compared with A-CW (35.88 ± 15.25 g) and Mg-CW (46.25 ± 18.88 g), accomplished by stronger tolerance to high pH (>10). The microbial abundance (16S rRNA) in the P-CW was 15.6 and 8.12 times higher than that of Mg-CW and A-CW, respectively, resulting in lower global warming potential. Tanking all factors into consideration, addition of peat could be an effective method to optimize the nutrient removal performance of Mg-CW.


Asunto(s)
Óxido de Magnesio , Humedales , Nitrógeno/análisis , Nutrientes , ARN Ribosómico 16S , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...