Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589824

RESUMEN

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Asunto(s)
Celulasa , Pinellia , Pinellia/genética , Protoplastos , Fitomejoramiento , Barajamiento de ADN
2.
J Plant Res ; 135(3): 485-500, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35380307

RESUMEN

Rhynchophylline (RIN) and isorhynchophylline (IRN) are extracted from Uncaria rhynchophylla, which are used to treat Alzheimer's disease. However, the massive accumulation of RIN and IRN in U. rhynchophylla requires exogenous stimulation. Ethylene is a potential stimulant for RIN and IRN biosynthesis, but there is no study on the role of ethylene in RIN or IRN synthesis. This study investigated the regulation of ethylene in RIN and IRN biosynthesis in U. rhynchophylla. An increase in the content of RIN and IRN was observed that could be attributed to the release of ethylene from 18 mM ethephon, while ethylene released from 36 mM ethephon reduced the content of RIN and IRN. The transcriptome and weighted gene co-expression network analysis indicated the up-regulation of seven key enzyme genes related to the RIN/IRN biosynthesis pathway and starch/sucrose metabolism pathway favored RIN/IRN synthesis. In comparison, the down-regulation of these seven key enzyme genes contributed to the reduction of RIN/IRN. Moreover, the inhibition of photosynthesis is associated with a reduction in RIN/IRN. Photosynthesis was restrained owing to the down-regulation of Lhcb1 and Lhcb6 after 36 mM ethephon treatment and further prevented supply of primary metabolites (such as α-D-glucose) for RIN/IRN synthesis. However, uninterrupted photosynthesis ensured a normal supply of primary metabolites at 18 mM ethephon treatment. AP2/ERF1, bHLH1, and bHLH2 may positively regulate the RIN/IRN accumulation, while NAC1 may play a negative regulatory role. Our results construct the potential bidirectional model for ethylene regulation on RIN/IRN synthesis and provide novel insight into the ethylene-mediated regulation of the metabolism of terpenoid indole alkaloids.


Asunto(s)
Uncaria , Etilenos/metabolismo , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/farmacología , Oxindoles , Transcriptoma , Uncaria/genética , Uncaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...