Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 6(57)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712473

RESUMEN

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Receptores de Reconocimiento de Patrones/metabolismo , Agua de Mar/microbiología , Microbiología del Agua , Animales , Organismos Acuáticos/inmunología , Organismos Acuáticos/metabolismo , Biomarcadores , Línea Celular , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Ratones , Océanos y Mares , Receptores de Reconocimiento de Patrones/genética , Especificidad de la Especie
2.
Sci Rep ; 10(1): 13894, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807819

RESUMEN

The deep sea represents the largest and least explored biome on the planet. Despite the iconic status of the Galapagos Islands and being considered one of the most pristine locations on earth, the deep-sea benthic ecosystems of the archipelago are virtually unexplored in comparison to their shallow-water counterparts. In 2015, we embarked on a multi-disciplinary scientific expedition to conduct the first systematic characterization of deep-sea benthic invertebrate communities of the Galapagos, across a range of habitats. We explored seven sites to depths of over 3,300 m using a two-part Remotely Operated Vehicle (ROV) system aboard the E/V Nautilus, and collected 90 biological specimens that were preserved and sent to experts around the world for analysis. Of those, 30 taxa were determined to be undescribed and new to science, including members of five new genera (2 sponges and 3 cnidarians). We also systematically analysed image frame grabs from over 85 h of ROV footage to investigate patterns of species diversity and document the presence of a range of underwater communities between depths of 290 and 3,373 m, including cold-water coral communities, extensive glass sponge and octocoral gardens, and soft-sediment faunal communities. This characterization of Galapagos deep-sea benthic invertebrate megafauna across a range of ecosystems represents a first step to study future changes that may result from anthropogenic impacts to the planet's climate and oceans, and informed the creation of fully protected deep-water areas in the Galapagos Marine Reserve that may help preserve these unique communities in our changing planet.


Asunto(s)
Ecosistema , Invertebrados/fisiología , Islas , Océanos y Mares , Animales , Biodiversidad , Ecuador , Geografía , Especificidad de la Especie
3.
Ecol Evol ; 9(6): 3306-3320, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962894

RESUMEN

Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo-Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme-associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D-loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between-basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an F ST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.

4.
PLoS One ; 13(8): e0200386, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067780

RESUMEN

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding "fingernails", and re-fabrication of soft manipulators at sea. These were then used to successfully grasp fragile deep-sea animals, such as goniasterids and holothurians, which have historically been difficult to collect undamaged via rigid mechanical arms and suction samplers. As scientific expeditions to remote parts of the world are costly and lengthy to plan, on-the-fly soft robot actuator printing offers a real-time solution to better understand and interact with delicate deep-sea environments, soft-bodied, brittle, and otherwise fragile organisms. This also offers a less invasive means of interacting with slow-growing deep marine organisms, some of which can be up to 18,000 years old.


Asunto(s)
Organismos Acuáticos , Diseño de Equipo , Robótica , Océanos y Mares , Impresión Tridimensional
5.
Curr Biol ; 28(4): R144-R145, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29462576

RESUMEN

Cirrate octopods (Cephalopoda: Cirrata) are among the largest invertebrates of the deep sea. These organisms have long been known to lay single, large egg capsules on hard substrates on the ocean bottom [1], including cold-water octocorals (Anthozoa: Octocorallia). The egg capsule is comprised of an external egg case as well as the chorion and developing embryo. Development in cirrates proceeds for an extended time without parental care [2]. Although juveniles have previously been collected in the midwater [3], cirrate hatchlings have so far never been observed. Here, we provide the first video of a living hatchling and use magnetic resonance imaging (MRI) to analyze its anatomy and assign the specimen to the genus Grimpoteuthis, the so-called dumbo octopods. The specimen's behavior and advanced state of organ development show that cirrate hatchlings possess all morphological features required for movement via fin-swimming, for visually and chemically sensing their environment, and for prey capture. In addition, the presence of a large internal yolk sac reduces the risk of failure at first feeding. These data provide evidence that dumbo octopods hatch as competent juveniles.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Octopodiformes/crecimiento & desarrollo , Animales , Animales Recién Nacidos/anatomía & histología , Animales Recién Nacidos/fisiología , Imagen por Resonancia Magnética , Octopodiformes/anatomía & histología , Octopodiformes/fisiología , Percepción Olfatoria , Conducta Predatoria , Natación , Grabación en Video , Percepción Visual
6.
Mol Phylogenet Evol ; 100: 70-79, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26993764

RESUMEN

Species delimitations is problematic in many cases due to the difficulty of evaluating predictions from species hypotheses. In many cases delimitations rely on subjective interpretations of morphological and/or DNA data. Species with inadequate genetic resources needed to answer questions regarding evolutionary relatedness and genetic uniqueness are particularly problematic. In this study, we demonstrate the utility of restriction site associated DNA sequencing (RAD-seq) to objectively resolve unambiguous phylogenetic relationships in a recalcitrant group of deep-sea corals with divergences >80 million years. We infer robust species boundaries in the genus Paragorgia by testing alternative delimitation hypotheses using a Bayes Factors delimitation method. We present substantial evidence rejecting the current morphological species delimitation model for the genus and infer the presence of cryptic species associated with environmental variables. We argue that the suitability limits of RAD-seq for phylogenetic inferences cannot be assessed in terms of absolute time, but are contingent on taxon-specific factors. We show that classical taxonomy can greatly benefit from integrative approaches that provide objective tests to species delimitation hypotheses. Our results lead the way for addressing further questions in marine biogeography, community ecology, population dynamics, conservation, and evolution.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Filogenia , Mapeo Restrictivo/métodos , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases , Teorema de Bayes , Sitios Genéticos , Marcadores Genéticos , Mitocondrias/genética , Especificidad de la Especie
7.
Genome Biol Evol ; 7(12): 3207-25, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26537225

RESUMEN

High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes--generically known as restriction site associated DNA sequencing (RAD-seq)--is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting "neutral" elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods.


Asunto(s)
Motivos de Nucleótidos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Animales , Enzimas de Restricción del ADN/metabolismo , Biblioteca Genómica , Plantas/genética
8.
PLoS One ; 10(10): e0139904, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26509818

RESUMEN

The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.


Asunto(s)
Ecosistema , Animales , Antozoos , Biodiversidad , Arrecifes de Coral , New England
9.
Front Microbiol ; 6: 901, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441852

RESUMEN

Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4-293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50' N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.

10.
Proc Biol Sci ; 282(1807): 20150008, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904664

RESUMEN

The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200-1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.


Asunto(s)
Antozoos/genética , Animales , Flujo Génico , Flujo Genético , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Océanos y Mares , Especificidad de la Especie
11.
Mol Ecol ; 24(3): 673-89, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25602032

RESUMEN

The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep-sea hydrothermal vent barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern vent fauna. Here, we characterize the global genetic diversity of vent barnacles to infer their time of radiation, place of origin, mode of dispersal and diversification. Our approach was to target a suite of multiple loci in samples representing seven of the eight described genera. We also performed restriction-site associated DNA sequencing on individuals from each species. Phylogenetic inferences and topology hypothesis tests indicate that vent barnacles have colonized deep-sea hydrothermal vents at least twice in history. Consistent with preliminary estimates, we find a likely radiation of barnacles in vent ecosystems during the Cenozoic. Our analyses suggest that the western Pacific was the place of origin of the major vent barnacle lineage, followed by circumglobal colonization eastwards through the Southern Hemisphere during the Neogene. The inferred time of radiation rejects the classic hypotheses of antiquity of vent taxa. The timing and the mode of origin, radiation and dispersal are consistent with recent inferences made for other deep-sea taxa, including nonvent species, and are correlated with the occurrence of major geological events and mass extinctions. Thus, we suggest that the geological processes and dispersal mechanisms discussed here can explain the current distribution patterns of many other marine taxa and have played an important role shaping deep-sea faunal diversity. These results also constitute the critical baseline data with which to assess potential effects of anthropogenic disturbances on deep-sea ecosystems.


Asunto(s)
Evolución Biológica , Respiraderos Hidrotermales , Filogenia , Thoracica/clasificación , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Ecosistema , Variación Genética , Histonas/genética , Modelos Genéticos , Datos de Secuencia Molecular , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Thoracica/genética
12.
Proc Natl Acad Sci U S A ; 111(32): 11744-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071200

RESUMEN

On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations.


Asunto(s)
Antozoos/efectos de los fármacos , Contaminación por Petróleo/efectos adversos , Contaminación Química del Agua/efectos adversos , Animales , Ecosistema , Monitoreo del Ambiente , Golfo de México
13.
Proc Biol Sci ; 280(1770): 20131876, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24026823

RESUMEN

Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.


Asunto(s)
ADN Mitocondrial/genética , Filogenia , Poliquetos/clasificación , Poliquetos/fisiología , Animales , ADN Intergénico/genética , ADN Intergénico/metabolismo , ADN Mitocondrial/metabolismo , Ecosistema , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Respiraderos Hidrotermales , Datos de Secuencia Molecular , Poliquetos/anatomía & histología , Poliquetos/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Análisis de Secuencia de ADN
14.
PLoS One ; 7(11): e49474, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185341

RESUMEN

Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand's EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.


Asunto(s)
Ecosistema , Invertebrados/genética , Animales , ADN/genética , Complejo IV de Transporte de Electrones/metabolismo , Marcadores Genéticos , Variación Genética , Genética de Población , Geografía , Haplotipos , Invertebrados/fisiología , Modelos Genéticos , Nueva Zelanda , Océanos y Mares , ARN/metabolismo , ARN Mitocondrial , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN/métodos
15.
Proc Natl Acad Sci U S A ; 109(50): 20303-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22454495

RESUMEN

To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.


Asunto(s)
Antozoos/efectos de los fármacos , Arrecifes de Coral , Contaminación por Petróleo/efectos adversos , Animales , Antozoos/clasificación , Antozoos/genética , Cromatografía de Gases , Sedimentos Geológicos/análisis , Golfo de México , Datos de Secuencia Molecular , Contaminación por Petróleo/análisis , Filogenia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Ann Rev Mar Sci ; 2: 253-78, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21141665

RESUMEN

In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.


Asunto(s)
Monitoreo del Ambiente , Fenómenos Geológicos , Actividades Humanas , Ecosistema , Océanos y Mares
17.
J Hered ; 100(1): 86-96, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18790728

RESUMEN

Previous genetic studies suggest Cape Cod, MA, as a phylogenetic break for benthic marine invertebrates; however, diffuse sampling in this area has hindered fine-scale determination of the break's location and underlying causes. Furthermore, some species exhibit breaks in different places, and others exhibit no breaks in this region. We analyze the phylogeographic patterns of 2 mitochondrial genes from 10 populations of the bamboo worm Clymenella torquata (Annelida: Maldanidae) focused around Cape Cod but extending from the Bay of Fundy, Canada, to New Jersey. A common invertebrate along the US coast, C. torquata, possesses life-history characteristics that should make it sensitive to factors such as dispersal barriers, bottlenecks, and founder events. As an inhabitant of soft sediments, C. torquata offers a unique contrast to existing research dominated by organisms dwelling on hard substrates. Our genetic data show a clear phylogenetic break and a cline of haplotype frequencies from north to south. Fine-scale sampling of populations on Cape Cod, combined with other sampled populations, confirm that this distinct break is not on the Cape Cod peninsula itself but to the south near a boundary of oceanic water masses. Low levels of gene flow occur in these populations, in an asymmetric manner congruent with coastal current patterns. No significant effect of Pleistocene glaciation was seen in the pattern of genetic diversity over the sampled range.


Asunto(s)
Variación Genética/genética , Filogenia , Poliquetos/genética , Animales , Demografía , Ecosistema , Flujo Génico , Redes Reguladoras de Genes , Genética de Población , Geografía , Haplotipos , Massachusetts , Humedales
18.
Nature ; 453(7199): 1236-8, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18580949

RESUMEN

Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.


Asunto(s)
Erupciones Volcánicas/estadística & datos numéricos , Animales , Regiones Árticas , Geografía , Oceanografía , Océanos y Mares , Poríferos , Agua de Mar
19.
Environ Microbiol ; 8(11): 1902-12, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17014490

RESUMEN

Organisms at hydrothermal vents inhabit discontinuous chemical 'islands' along mid-ocean ridges, a scenario that may promote genetic divergence among populations. The 2003 discovery of mussels at the Lost City Hydrothermal Field provided a means of evaluating factors that govern the biogeography of symbiotic bacteria in the deep sea. The unusual chemical composition of vent fluids, the remote location, and paucity of characteristic vent macrofauna at the site, raised the question of whether microbial symbioses existed at the extraordinary Lost City. If so, how did symbiotic bacteria therein relate to those hosted by invertebrates at the closest known hydrothermal vents along the Mid-Atlantic Ridge (MAR)? To answer these questions, we performed microscopic and molecular analyses on the bacteria found within the gill tissue of Bathymodiolus mussels (Mytilidae, Bathymodiolinae) that were discovered at the Lost City. Here we show that Lost City mussels harbour chemoautotrophic and methanotrophic endosymbionts simultaneously. Furthermore, populations of the chemoautotrophic symbionts from the Lost City and two sites along the MAR are genetically distinct from each other, which suggests spatial isolation of bacteria in the deep sea. These findings provide new insights into the processes that drive diversification of bacteria and evolution of symbioses at hydrothermal vents.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Bivalvos/microbiología , Ecosistema , Simbiosis , Animales , Océano Atlántico , Bacterias/genética , Bacterias/metabolismo , Crecimiento Quimioautotrófico , Genes de ARNr , Geografía , Filogenia , ARN Ribosómico 16S , Temperatura
20.
Science ; 307(5714): 1428-34, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15746419

RESUMEN

The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.


Asunto(s)
Archaea/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Carbonatos , Ecosistema , Sedimentos Geológicos , Invertebrados , Agua de Mar , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Biomasa , Recuento de Colonia Microbiana , Ambiente , Peces , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Calor , Hidrógeno/análisis , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Lípidos/análisis , Metano/análisis , Metano/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...