Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(6): 112635, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37300835

RESUMEN

Coat protein complex II (COPII) plays an integral role in the packaging of secretory cargoes within membrane-enclosed transport carriers that leave the endoplasmic reticulum (ER) from discrete subdomains. Lipid bilayer remodeling necessary for this process is driven initially by membrane penetration mediated by the Sar1 GTPase and further stabilized by assembly of a multilayered complex of several COPII proteins. However, the relative contributions of these distinct factors to transport carrier formation and protein trafficking remain unclear. Here, we demonstrate that anterograde cargo transport from the ER continues in the absence of Sar1, although the efficiency of this process is dramatically reduced. Specifically, secretory cargoes are retained nearly five times longer at ER subdomains when Sar1 is depleted, but they ultimately remain capable of being translocated to the perinuclear region of cells. Taken together, our findings highlight alternative mechanisms by which COPII promotes transport carrier biogenesis.


Asunto(s)
GTP Fosfohidrolasas , Proteínas de Transporte Vesicular , GTP Fosfohidrolasas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
2.
Cell Rep ; 38(3): 110263, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35045304

RESUMEN

The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis/fisiología , Membrana Nuclear/metabolismo , Animales , Caenorhabditis elegans
3.
J Cell Biol ; 219(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32271860

RESUMEN

The nuclear permeability barrier depends on closure of nuclear envelope (NE) holes. Here, we investigate closure of the NE opening surrounding the meiotic spindle in C. elegans oocytes. ESCRT-III components accumulate at the opening but are not required for nuclear closure on their own. 3D analysis revealed cytoplasmic membranes directly adjacent to NE holes containing meiotic spindle microtubules. We demonstrate that the NE protein phosphatase, CNEP-1/CTDNEP1, controls de novo glycerolipid synthesis through lipin to prevent invasion of excess ER membranes into NE holes and a defective NE permeability barrier. Loss of NE adaptors for ESCRT-III exacerbates ER invasion and nuclear permeability defects in cnep-1 mutants, suggesting that ESCRTs restrict excess ER membranes during NE closure. Restoring glycerolipid synthesis in embryos deleted for CNEP-1 and ESCRT components rescued NE permeability defects. Thus, regulating the production and feeding of ER membranes into NE holes together with ESCRT-mediated remodeling is required for nuclear closure.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Lípidos/genética , Proteínas de la Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Animales , Cromatina/genética , Retículo Endoplásmico/genética , Células HeLa , Humanos , Lípidos/biosíntesis , Ratones , Microtúbulos/genética , Mitosis/genética , Membrana Nuclear/metabolismo , Compuestos Orgánicos , Huso Acromático/genética
4.
Genetics ; 213(1): 59-77, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31331946

RESUMEN

cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases, and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue-light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles, and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes, and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R, and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal, and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.


Asunto(s)
GMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/metabolismo , Optogenética/métodos , Animales , Caenorhabditis elegans , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Opsinas/genética , Opsinas/metabolismo , Imagen Óptica/métodos , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(14): 6858-6867, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894482

RESUMEN

The formation of multivesicular endosomes (MVEs) mediates the turnover of numerous integral membrane proteins and has been implicated in the down-regulation of growth factor signaling, thereby exhibiting properties of a tumor suppressor. The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in MVE biogenesis, enabling cargo selection and intralumenal vesicle (ILV) budding. However, the spatiotemporal pattern of endogenous ESCRT complex assembly and disassembly in mammalian cells remains poorly defined. By combining CRISPR/Cas9-mediated genome editing and live cell imaging using lattice light sheet microscopy (LLSM), we determined the native dynamics of both early- and late-acting ESCRT components at MVEs under multiple growth conditions. Specifically, our data indicate that ESCRT-0 accumulates quickly on endosomes, typically in less than 30 seconds, and its levels oscillate in a manner dependent on the downstream recruitment of ESCRT-I. Similarly, levels of the ESCRT-I complex also fluctuate on endosomes, but its average residency time is more than fivefold shorter compared with ESCRT-0. Vps4 accumulation is the most transient, however, suggesting that the completion of ILV formation occurs rapidly. Upon addition of epidermal growth factor (EGF), both ESCRT-I and Vps4 are retained at endosomes for dramatically extended periods of time, while ESCRT-0 dynamics are only modestly affected. Our findings are consistent with a model in which growth factor stimulation stabilizes late-acting components of the ESCRT machinery at endosomes to accelerate the rate of ILV biogenesis and attenuate signal transduction initiated by receptor activation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cuerpos Multivesiculares/metabolismo , Sistemas CRISPR-Cas , Línea Celular Transformada , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Edición Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Cuerpos Multivesiculares/genética , Transporte de Proteínas/fisiología
6.
PLoS Genet ; 14(5): e1007312, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29742100

RESUMEN

During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.


Asunto(s)
Mutación , Reconocimiento en Psicología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Larva/genética , Larva/metabolismo , Locomoción/genética , Locomoción/fisiología , Microscopía Confocal , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
7.
Nat Commun ; 8(1): 1439, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129923

RESUMEN

Degradation of most integral membrane proteins is directed by the endosomal sorting complex required for transport (ESCRT) machinery, which selectively targets ubiquitin-modified cargoes into intralumenal vesicles (ILVs) within multivesicular endosomes (MVEs). To better understand the mechanisms underlying ESCRT-mediated formation of ILVs, we exploited the rapid, de novo biogenesis of MVEs during the oocyte-to-embryo transition in C. elegans. In contrast to previous models suggesting that ILVs form individually, we demonstrate that they remain tethered to one another subsequent to internalization, arguing that they bud continuously from stable subdomains. In addition, we show that membrane bending and ILV formation are directed specifically by the ESCRT-III complex in vivo in a manner regulated by Ist1, which promotes ESCRT-III assembly and inhibits the incorporation of upstream ESCRT components into ILVs. Our findings underscore essential actions for ESCRT-III in membrane remodeling, cargo selection, and cargo retention, which act repetitively to maximize the rate of ILV formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/biosíntesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Oocitos/crecimiento & desarrollo , Transporte de Proteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...