Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(4): 6706-6732, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439371

RESUMEN

Given the importance of vector radiative transfer models in ocean color remote sensing and a lack of suitable models capable of analyzing the Earth curvature effects on Mie-scattering radiances, this study presents an enhanced vector radiative transfer model for a spherical shell atmosphere geometry by the Monte Carlo method (MC-SRTM), considering the effects of Earth curvature, different atmospheric conditions, flat sea surface reflectance, polarization, high solar and sensor geometries, altitudes and wavelengths. A Monte Carlo photon transport model was employed to simulate the vector radiative transfer processes and their effects on the top-of-atmosphere (TOA) radiances. The accuracy of the MC-SRTM was verified by comparing its scalar model outputs from Henyey-Greenstein (HG) phase function with the Kattawar-Adams model results, and the mean relative differences were less than 2.75% and 4.33% for asymmetry factors (g-values) of 0.5 and 0.7, respectively. The vector mode results of MC-SRTM for a spherical shell geometry with the Mie-scattering phase matrix were compared with the PCOART-SA model results (from Polarized Coupled Ocean-Atmosphere Radiative Transfer model based on the pseudo-spherical assumption), and the mean relative differences were less than 2.67% when solar zenith angles (SZAs) > 70 ∘ and sensor viewing zenith angles (VZAs) < 60 ∘ for two aerosol models (coastal and tropospheric models). Based on the MC-SRTM, the effects of Earth curvature on TOA radiances at high SZAs and VZAs were analyzed. For pure aerosol atmosphere, the effects of Earth curvature on TOA radiances reached up to 5.36% for SZAs > 70 ∘ and VZAs < 60 ∘ and reduced to less than 2.60% for SZAs < 70 ∘ and VZAs > 60 ∘. The maximum Earth curvature effect of pure aerosol atmosphere was nearly same (10.06%) as that of the ideal molecule atmosphere. The results also showed no statistically significant differences for the aerosol-molecule mixed and pure aerosol atmospheres. Our study demonstrates that there is a need to consider the Earth curvature effects in the atmospheric correction of satellite ocean color data at high solar and sensor geometries.

2.
Opt Express ; 32(5): 7659-7681, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439443

RESUMEN

Accurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data). This study attempts to enhance the POLYMER algorithm to enable atmospheric correction of hyperspectral and multispectral remote sensing data over a wide range of inland and ocean waters. The original POLYMER algorithm is less suitable owing to its complete reliance on a polynomial approach to model the atmospheric reflectance as a function of the wavelength and retrieve the water-leaving reflectance using two semi-analytical models (MM01 and PR05). The polynomial functions calculate the bulk atmospheric contribution instead of using an explicit method to estimate aerosol radiance separately, resulting the erroneous water color products in inland and coastal waters. The modified POLYMER algorithm (mPOLYMER) employs more realistic approaches to estimate aerosol contributions with a combination of UV and Visible-NIR bands and enables accurate retrievals of water-leaving radiance from both hyperspectral and multispectral remote sensing data. To assess the relative performance and wider applicability of mPOLYMER, the original and enhanced algorithms were tested on a variety of HICO, MSI and MODIS-Aqua data and the retrieved Lwn products were compared with AERONET-OC and OOIL-regional in-situ data. Expectedly, the mPOLYMER algorithm greatly improved the accuracy of Lwn (in terms of magnitude and spectral shape) when applied to MODIS-Aqua and HICO data in highly turbid productive waters (with higher concentrations of phytoplankton or with dense algal blooms) in Muttukadu Lagoon, Lake Erie, Yangtze River Estuary, Baltic Sea and Arabian Sea. In contrast, the original POLYMER algorithm overestimated Lwn in the visible and NIR bands and produced unphysical negative Lwn or distorted Lwn spectra in turbid productive waters. The mPOLYMER yielded a relative mean error reduction of more than 50% (i.e., from 79% to 34%) in Lwn for a large number of matchup data. The improved accuracy and data quality is because the mPOLYMER algorithm's funio and coefficients sufficiently accounted for the enhanced backscattering contribution of phytoplankton and suspended sediments in optically complex waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA