Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 19(4): 342-7, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11283592

RESUMEN

We describe a flexible system for gene expression profiling using arrays of tens of thousands of oligonucleotides synthesized in situ by an ink-jet printing method employing standard phosphoramidite chemistry. We have characterized the dependence of hybridization specificity and sensitivity on parameters including oligonucleotide length, hybridization stringency, sequence identity, sample abundance, and sample preparation method. We find that 60-mer oligonucleotides reliably detect transcript ratios at one copy per cell in complex biological samples, and that ink-jet arrays are compatible with several different sample amplification and labeling techniques. Furthermore, results using only a single carefully selected oligonucleotide per gene correlate closely with those obtained using complementary DNA (cDNA) arrays. Most of the genes for which measurements differ are members of gene families that can only be distinguished by oligonucleotides. Because different oligonucleotide sequences can be specified for each array, we anticipate that ink-jet oligonucleotide array technology will be useful in a wide variety of DNA microarray applications.


Asunto(s)
Expresión Génica , Hibridación in Situ/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligonucleótidos/química , Células Cultivadas , Cromatografía Líquida de Alta Presión , ADN Complementario/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Células Jurkat , Células K562 , Oligonucleótidos/síntesis química , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , ARN Complementario/metabolismo , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae , Sensibilidad y Especificidad , Factores de Tiempo , Transcripción Genética , Tretinoina/química , Células Tumorales Cultivadas
2.
Genes Dev ; 5(5): 773-85, 1991 May.
Artículo en Inglés | MEDLINE | ID: mdl-1827420

RESUMEN

U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the U4/U6 helix by dominant (gain-of-function), compensatory mutations in U6 results in wild-type growth. Cold-insensitive growth can also be restored by two classes of recessive (loss-of-function) suppressors: (1) mutations in PRP24, which we show to be a U6-specific binding protein of the RNP-consensus family; and (2) mutations in U6, which lie outside the interaction domain and identify putative PRP24-binding sites. Destabilization of the U4/U6 helix causes the accumulation of a PRP24/U4/U6 complex, which is undetectable in wild-type cells. The loss-of-function suppressor mutations inhibit the binding of PRP24 to U6, and thus presumably promote the release of PRP24 from the PRP24/U4/U6 complex and the reformation of the base-paired U4/U6 snRNP. We propose that the PRP24/U4/U6 complex is normally a highly transient intermediate in the spliceosome cycle and that PRP24 promotes the reannealing of U6 with U4.


Asunto(s)
Proteínas Portadoras/genética , ARN de Hongos/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Supresión Genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/metabolismo , Secuencia de Consenso , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fenotipo , Pruebas de Precipitina , Empalme del ARN , ARN de Hongos/metabolismo , Proteínas de Unión al ARN , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia
3.
J Biol Chem ; 263(16): 7717-25, 1988 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-2836393

RESUMEN

C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is found in both the cytoplasm and the mitochondria. The gene encoding yeast mitochondrial C1-tetrahydrofolate synthase was isolated using synthetic oligonucleotide probes based on the amino-terminal sequence of the purified protein. Hybridization analysis shows that the gene (designated MIS1) has a single copy in the yeast genome. The predicted amino acid sequence of mitochondrial C1-tetrahydrofolate synthase shares 71% identity with yeast C1-tetrahydrofolate synthase and shares 39% identity with clostridial 10-formyltetrahydrofolate synthetase. Chromosomal deletions of the mitochondrial C1-tetrahydrofolate synthase gene were generated using the cloned MIS1 gene. Mutant strains which lack a functional MIS1 gene are viable and can grow in medium containing a nonfermentable carbon source. In fact, deletion of the MIS1 locus has no detectable effect on cell growth.


Asunto(s)
Formiato-Tetrahidrofolato Ligasa/genética , Genes Fúngicos , Ligasas/genética , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Enzimas de Restricción del ADN/metabolismo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 261(26): 12266-71, 1986 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-3528153

RESUMEN

C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."


Asunto(s)
Formiato-Tetrahidrofolato Ligasa/aislamiento & purificación , Isoenzimas/aislamiento & purificación , Ligasas/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Mitocondrias/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...