Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
2.
Adv Mater ; 34(7): e2106307, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34859919

RESUMEN

The checkpoint inhibitor therapy that blocks programmed death-1 (PD-1) and its major ligand PD-L1 has achieved encouraging clinical efficacy in certain cancers. However, the binding of checkpoint inhibitors with other immune cells that express PD-L1 often results in a low response rate to the blockade and severe adverse effects. Herein, an LyP1 polypeptide-modified outer-membrane vesicle (LOMV) loaded with a PD-1 plasmid is developed to achieve self-blockade of PD-L1 in tumor cells. The nanocarriers accumulate in the tumor tissue through OMV-targeting ability and are internalized into the tumor cells via the LyP1-mediated target, subsequently delivering PD-1 plasmid into the nucleus, leading to the expression of PD-1 by the tumor cells. In addition, a magnetic particle chemiluminescence kit is developed to quantitatively detect the binding rate of PD-1/PD-L1. The self-expressed PD-1 bonded with the PD-L1 is expressed by both autologous and neighboring tumor cells, achieving self-blockade. Simultaneously, the outer-membrane protein of LOMV recruits cytotoxic lymphocyte cells and natural killer cells to tumor tissues and stimulates them to secrete IFN-γ  , improving the antitumor activity of the PD-1/PD-L1 self-blocking therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Bacterias/metabolismo , Humanos , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Neoplasias/tratamiento farmacológico
4.
Nano Lett ; 21(10): 4231-4240, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998789

RESUMEN

The tumor immunosuppressive microenvironment greatly limits the efficacy of immunotherapy. Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the tumor microenvironment, which can inhibit the tumor after converting it to an M1-like phenotype. In addition, immunogenic cell death (ICD) can increase the amount of T lymphocytes in tumors, activating antineoplastic immunity. Herein, tumor-associated macrophage polarization therapy supplemented with PLGA-DOX (PDOX)-induced ICD is developed for cancer treatment. The nanoparticles/bacteria complex (Ec-PR848) is fabricated for tumor targeting and TAM polarization, and PLGA-R848 (PR848) are attached to the surface of Escherichia coli (E. coli) MG1655 via electrostatic absorption. The toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) and E. coli can greatly polarize M2 macrophages to M1 macrophages, while PDOX-induced ICD can also impair the immunosuppression of the tumor microenvironment. This strategy shows that tumor-associated macrophage polarization therapy combined with ICD induced by low-dose chemotherapeutic drugs can commendably enhance the efficacy of immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Escherichia coli , Muerte Celular Inmunogénica , Inmunoterapia , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Macrófagos Asociados a Tumores
5.
Adv Sci (Weinh) ; 8(7): 2003572, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854892

RESUMEN

In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.


Asunto(s)
Bacterias/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA