Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 311: 116407, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001769

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Inonotus hispidus (I. hispidus), known as shaggy bracket, has been used extensively in China and some East Asian countries as a traditional medicinal macrofungus to treat difficult diseases, such as diabetes, gout, and arthritis. Modern pharmacological research has shown that I. hispidus has an important application value in antitumor treatment. However, the main anti-cervical cancer activity substances from its mycelia and its mechanisms are still not clear. AIMS OF THE STUDY: To enrich the germplasm resources of I. hispidus, to reveal the antitumor activity of the extract from the mycelium of I. hispidus against cervical cancer, and to preliminarily analyze its action mechanism. MATERIALS AND METHODS: The SH3 strain was isolated from wild fruiting bodies and identified by morphology and molecular biology. The antitumor active component from the mycelium of I. hispidus was isolated and identified with liquid chromatography-tandem mass spectrometry. The cell viability was assessed by MTT assay. The cell cycle distribution, apoptotic cell detection, and mitochondrial membrane potential were detected by flow cytometer. The expression of apoptosis-related proteins was assessed by Western blotting. The inhibition of tumor growth in vivo was assessed by a mouse xenograft model. RESULTS: The SH3 strain was isolated and identified as a new strain of I. hispidus. The antitumor active component containing cyclic peptides from the mycelium of I. hispidus (CCM) was isolated for the first time. In addition, we found that CCM had a strong inhibitory effect on HeLa proliferation in vitro and in vivo. Mechanically, the CCM blocked the cell cycle at the G0/G1 phase, decreased the mitochondrial membrane potential, and eventually promoted apoptosis of HeLa cells through the mitochondria-mediated pathway by upregulating the expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3 and downregulating the expression level of Bcl-2. CONCLUSIONS: Our study not only enriches the strain resources of I. hispidus but also confirms that the mycelium of this strain has active components that can inhibit cervical cancer. This is highly significant for the development of active drugs and drug lead molecules for treating cervical cancer.


Asunto(s)
Apoptosis , Extractos Vegetales , Humanos , Ratones , Animales , Células HeLa , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Mitocondrias , Línea Celular Tumoral , Proliferación Celular
2.
J Zhejiang Univ Sci B ; 10(6): 427-33, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19489108

RESUMEN

Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 degrees C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it enhanced germination index, reduced the mean germination time (MGT), and increased shoot height, root length, and shoot and root dry weights in both maize lines. The decline of malondialdehyde (MDA) content and relative permeability of the plasma membrane and the increase of the concentrations of soluble sugars and proline, peroxidase (POD) activity, and catalase (CAT) activity were detected both in the chilling-sensitive and chilling-tolerant maize seedlings after priming with the three concentrations of chitosan. HuangC was less sensitive to responding to different concentrations of chitosan. Priming with 0.50% chitosan for about 60 approximately 64 h seemed to have the best effects. Thus, it suggests that seed priming with chitosan may improve the speed of germination of maize seed and benefit for seedling growth under low temperature stress.


Asunto(s)
Germinación/fisiología , Respuesta al Choque Térmico/fisiología , Plantones/fisiología , Semillas/fisiología , Zea mays/crecimiento & desarrollo , Quitosano , Relación Dosis-Respuesta a Droga , Germinación/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Temperatura , Zea mays/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...