Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(21): 212002, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860102

RESUMEN

Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced higher-order corrections. In particular, so-called nonglobal logarithms emerge from soft radiation emitted off energetic partons inside jets. While this is a single-logarithmic effect at lepton colliders, at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting at four-loop order. This effect was discovered a long time ago, but not much is known about the higher-order behavior of these terms and their process dependence. We derive, for the first time, the all-order structure of these "super-leading logarithms" for generic 2→l scattering processes at hadron colliders and resum them in closed form.

2.
Phys Rev Lett ; 125(24): 242003, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412017

RESUMEN

We propose the jet charge observable as a novel probe of flavor structure in the nucleon spin program at the electron ion collider (EIC) and develop the underlying framework from first principles. We show that jet charge measurements can substantially enhance the sensitivity of spin asymmetries to different partonic flavors in the nucleon. This sensitivity can be further improved by constructing the jet charge using only a subset of hadron species (pions or kaons) in the jet. As an example, we use the Sivers asymmetry in back-to-back electron-jet production at the EIC to show that the jet charge can be a unique tool in constraining the Sivers function for different partonic flavors.

3.
Phys Rev Lett ; 116(19): 192001, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27232017

RESUMEN

Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.

4.
Phys Rev Lett ; 110(8): 082001, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473132

RESUMEN

We develop a framework for a systematic resummation of the transverse momentum distribution of top-quark pairs produced at hadron colliders based on effective field theory. Compared to Drell-Yan and Higgs production, a novel soft function matrix is required to account for the soft gluon emissions from the final states. We calculate this soft function at the next-to-leading order, and perform the resummation at the next-to-next-to-leading logarithmic accuracy. We compare our results with parton shower programs and with the experimental data at the Tevatron and the LHC. We also discuss the implications for the top quark charge asymmetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...