Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Chem Biol ; 3(10): 1230-1239, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36320893

RESUMEN

Exchange proteins directly activated by cAMP (EPAC) are guanine nucleotide exchange factors for the small GTPases, Rap1 and Rap2. They regulate several physiological functions and mitigation of their activity has been suggested as a possible treatment for multiple diseases such as cardiomyopathy, diabetes, chronic pain, and cancer. Several EPAC-specific modulators have been developed, however studies that quantify their structure-activity relationships are still lacking. Here we propose a quantitative structure-activity relationship (QSAR) model for a series of EPAC-specific compounds. The model demonstrated high reproducibility and predictivity and the predictive ability of the model was tested against a series of compounds that were unknown to the model. The compound with the highest predicted affinity was validated experimentally through fluorescence-based competition assays and NMR experiments revealed its mode of binding and mechanism of action as a partial agonist. The proposed QSAR model can, therefore, serve as an effective screening tool to identify promising EPAC-selective drug leads with enhanced potency.

2.
Bioinformatics ; 37(8): 1176-1177, 2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-32926121

RESUMEN

MOTIVATION: Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION: CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.


Asunto(s)
Análisis de Datos , Programas Informáticos , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Proteínas
3.
J Med Chem ; 63(9): 4762-4775, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32297742

RESUMEN

The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942-EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Sulfonamidas/metabolismo , Sitio Alostérico , Arginina/química , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Electricidad Estática , Sulfonamidas/química
4.
Cells ; 8(11)2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752286

RESUMEN

The universal second messenger cAMP regulates diverse intracellular processes by interacting with ubiquitously expressed proteins, such as Protein Kinase A (PKA) and the Exchange Protein directly Activated by cAMP (EPAC). EPAC is implicated in multiple pathologies, thus several EPAC-specific inhibitors have been identified in recent years. However, the mechanisms and molecular interactions underlying the EPAC inhibition elicited by such compounds are still poorly understood. Additionally, being hydrophobic low molecular weight species, EPAC-specific inhibitors are prone to forming colloidal aggregates, which result in non-specific aggregation-based inhibition (ABI) in aqueous systems. Here, we review from a biophysical perspective the molecular basis of the specific and non-specific interactions of two EPAC antagonists-CE3F4R, a non-competitive inhibitor, and ESI-09, a competitive inhibitor of EPAC. Additionally, we discuss the value of common ABI attenuators (e.g., TX and HSA) to reduce false positives at the expense of introducing false negatives when screening aggregation-prone compounds. We hope this review provides the EPAC community effective criteria to evaluate similar compounds, aiding in the optimization of existing drug leads, and informing the development of the next generation of EPAC-specific inhibitors.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hidrazonas/farmacología , Isoxazoles/farmacología , Quinolinas/farmacología , Diseño de Fármacos , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Terapia Molecular Dirigida , Unión Proteica
6.
Nucleic Acids Res ; 46(13): 6455-6469, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29905846

RESUMEN

5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA-protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130-14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and -1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.


Asunto(s)
Citosina/análogos & derivados , Replicación del ADN , ADN/química , Mutación , Citosina/química , ADN Polimerasa Dirigida por ADN/metabolismo , Células HEK293 , Histonas , Humanos , Simulación de Dinámica Molecular , Péptidos
7.
Angew Chem Int Ed Engl ; 56(45): 14130-14134, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28898504

RESUMEN

5-Formylcytosine (5fC) is an endogenous DNA modification frequently found within regulatory elements of mammalian genes. Although 5fC is an oxidation product of 5-methylcytosine (5mC), the two epigenetic marks show distinct genome-wide distributions and protein affinities, suggesting that they perform different functions in epigenetic signaling. A unique feature of 5fC is the presence of a potentially reactive aldehyde group in its structure. Herein, we show that 5fC bases in DNA readily form Schiff-base conjugates with Lys side chains of nuclear proteins in vitro and in vivo. These covalent protein-DNA complexes are reversible (t1/2 =1.8 h), suggesting that they contribute to transcriptional regulation and chromatin remodeling. On the other hand, 5fC-mediated DNA-protein cross-links, if present at replication forks or actively transcribed regions, may interfere with DNA replication and transcription.


Asunto(s)
ADN/química , Epigénesis Genética , Proteínas/química , 5-Metilcitosina/química , Citosina/análogos & derivados , Citosina/química , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica , Concentración de Iones de Hidrógeno , Espectrometría de Masa por Ionización de Electrospray , Temperatura , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...