Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Exp Rheumatol ; 42(7): 1387-1397, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38976290

RESUMEN

OBJECTIVES: The imbalance between apoptosis and proliferation in fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of rheumatoid arthritis (RA). This study aims to investigate the potential of all-trans retinoic acid (ATRA) as a supplementary therapeutic agent alongside methotrexate (MTX) for RA, by examining its ability to inhibit synovial cell proliferation and enhance apoptosis through the ROS-JNK signalling pathway. METHODS: The viability, apoptosis, and autophagy levels of human rheumatoid arthritis fibroblast-like synovial cells (HFLS-RA) were evaluated, while ROS generation was measured through the DCFH-DA fluorescence microplate assay. Western blotting was used to analyse the expression levels of JNK signalling pathway-related proteins. To assess therapeutic potential in vivo, a collagen-induced arthritis (CIA) model was established in Wistar rats. RESULTS: Small doses of MTX did not significantly affect the viability of HFLS-RAs or induce apoptosis. However, when ATRA was added to the treatment, the therapy markedly inhibited cell proliferation and induced apoptosis and excessive autophagy. Mechanistically, ATRA activated the ROS/JNK signalling pathway in HFLS-RAs. ROS scavengers and JNK inhibitors significantly attenuated ATRA-induced apoptosis and autophagy. In vivo, the combination therapy demonstrated a remarkable enhancement of the anti-arthritic efficacy in CIA rats. CONCLUSIONS: The ability of ATRA to inhibit proliferation in RA FLSs through autophagy and apoptosis underscores its potential as a supplementary therapeutic agent alongside MTX for RA, particularly when compared to the limited impact of MTX on these processes. This combined strategy holds promise for enhancing therapeutic outcomes and warrants further investigation in the management of RA.


Asunto(s)
Apoptosis , Artritis Experimental , Artritis Reumatoide , Autofagia , Proliferación Celular , Metotrexato , Ratas Wistar , Especies Reactivas de Oxígeno , Sinoviocitos , Tretinoina , Tretinoina/farmacología , Apoptosis/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Metotrexato/farmacología , Autofagia/efectos de los fármacos , Animales , Humanos , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sinoviocitos/efectos de los fármacos , Sinoviocitos/patología , Sinoviocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Antirreumáticos/farmacología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Membrana Sinovial/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas , Línea Celular
2.
Biosci Microbiota Food Health ; 43(1): 43-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188661

RESUMEN

Although iron(III) oxide nanoparticles (IONPs) are widely used in diverse applications ranging from food to biomedicine, the effects of IONPs on different locations of gut microbiota and short-chain fatty acids (SCFAs) are unclear. So, a subacute repeated oral toxicity study on Sprague Dawley (SD) rats was performed, administering low (50 mg/kg·bw), medium (100 mg/kg·bw), and high (200 mg/kg·bw) doses of IONPs. In this study, we found that a high dose of IONPs increased animal weight, and 16S rRNA sequencing revealed that IONPs caused intestinal flora disorders in both the cecal digesta- and mucosa-associated microbiota. However, only high-dose IONP exposure changed the abundance and composition of the mucosa-associated microbiota. IONPs increased the relative abundances of Firmicutes, Ruminococcaceae_UCG-014, Ruminiclostridium_9, Romboutsia, and Bilophila and decreased the relative abundance of Bifidobacterium, and many of these microorganisms are associated with weight gain, obesity, inflammation, diabetes, and mucosal damage. Functional analysis showed that changes in the gut microbiota induced by a high dose of IONPs were mainly related to metabolism, infection, immune, and endocrine disease functions. IONPs significantly elevated the levels of valeric, isobutyric, and isovaleric acid, promoting the absorption of iron. This is the first description of intestinal microbiota dysbiosis in SD rats caused by IONPs, and the effects and mechanisms of action of IONPs on intestinal and host health need to be further studied and confirmed.

3.
Sci Rep ; 14(1): 1811, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245637

RESUMEN

All-trans retinoic acid (ATRA) has emerged as a promising adjunctive treatment for rheumatoid arthritis. However, the mechanism by which ATRA mitigates arthritis remains unclear. In this study, we aimed to explore ATRA alleviation of arthritis and the role of ATRA in regulating intestinal homeostasis. Thus, we established a collagen-induced arthritis (CIA) model in Wistar rats. After 6 weeks of ATRA treatment, the arthritis index of CIA rats decreased, synovial inflammation was alleviated, and the disruption of Th17/Treg differentiation in peripheral blood was reversed. Additionally, the Th17/Treg ratio in the mesenteric lymph nodes decreased and the expression of Foxp3 mRNA increased and that of IL-17 mRNA decreased in the colon and ileum. Microscopically, we observed reduced intestinal inflammation. Transmission electron microscopy revealed that ATRA could repair tight junctions, which was accompanied by an increase in the expression of Claudin-1, Occludin and ZO-1. Moreover, ATRA regulated the composition of the gut microbiota, as was characterized based on the reduced abundance of Desulfobacterota and the increased abundance of Lactobacillus. In conclusion, ATRA demonstrates the potential to alleviate arthritis in CIA rats, which might be correlated with modulating the gut microbiota and regulating the intestinal immune response. Our findings provide novel insights into ATRA-mediated alleviation of arthritis.


Asunto(s)
Artritis Experimental , Ratas , Animales , Ratas Wistar , Inflamación/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , ARN Mensajero/metabolismo , Linfocitos T Reguladores , Células Th17
4.
Biomed Chromatogr ; 37(6): e5582, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36634911

RESUMEN

Fe2 O3 nanoparticles (Fe2 O3 NPs) are one of the components of food additives numbered E172 and have been widely used as food pigments to color sweets. Although a large number of studies have reported that Fe2 O3 NPs could induce hepatotoxicity, the pathogenesis is still unclear, especially the subacute effects on the metabolic network after oral exposure. Therefore, it is necessary to define a highly sensitive strategy to investigate the potential effects of Fe2 O3 NPs and the mechanism. In this study, an animal experiment showed that Fe2 O3 NPs had no obvious toxic effects on body weight, histopathology and oxide stress. In order to further investigate the potential effects of Fe2 O3 NPs in vivo, a more sensitive LC-MS/MS-based lipidomic study was performed. The results of multivariate statistical analysis and western blot analysis showed that Fe2 O3 NP exposure significantly affects the hepatic glycerophospholipid metabolism, decreasing triacylglycerol, diglyceride, lysophosphatidylethanolamine and free fatty acids, and increasing phosphatidylcholine, lysophosphatidylinositol and coenzyme Q9. These data provide further insight into the hepatic subacute effects of Fe2 O3 NPs obtained by conventional toxicology methods.


Asunto(s)
Lipidómica , Nanopartículas , Ratas , Animales , Ratas Sprague-Dawley , Cromatografía Liquida , Espectrometría de Masas en Tándem
5.
Vet Res Forum ; 13(4): 587-591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686860

RESUMEN

Astigmatid mites are economically significant pests of stored products and sources of inhalant allergens causing allergic rhinitis and asthma worldwide. The morphological identification of astigmatid mites at the species level is often a difficult task due to their small size, phenotypic similarity and lack of diagnostic characters. We used multiplex polymerase chain reaction (PCR) to identify astigmatid mite species, which could complement the morphological data for the species-specific identification of mites. Internal ribosomal transcribed spacer (ITS) sequences (i.e., partial 18S, the full length of ITS1-5.8S-ITS2 and partial 28S) from eight astigmatid species (Acarus siro, Tyrophagus putrescentiae, Suidasia nesbitti, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Lepidoglyphus destructor, Chortoglyphus arcuatus and Gohieria fuscus) were obtained by DNA extraction and then sequenced after PCR amplification. Specific primers were designed in the ITS2 region manually. Results revealed that an identification method for eight common astigmatid species was established based on multiplex PCR, which should be effective for the identification of other species of mites by redesigning species-specific primers in future experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA