Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39149339

RESUMEN

Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I (CDA-I), an autosomal recessive disease that manifests from mutations in the CDAN1 or CDIN1 (CDAN1 interacting nuclease 1) gene. CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1A) and ASF1B, but its function remains unclear. Here, we biochemically and structurally analyze CDAN1 complexes. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. Single-particle cryogenic electron microscopy (cryo-EM) structures of CDAN1 complexes identify interactions with ASF1 mediated by two CDAN1 B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally observe that one CDAN1 can recruit two ASF1 molecules and that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters and inhibits the chaperone function of ASF1A/B and provide new molecular-level insights into this enigmatic complex.

2.
Cell Host Microbe ; 32(7): 1074-1088.e5, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917809

RESUMEN

Cyclic oligonucleotide-based signaling system (CBASS) is an antiviral system that protects bacteria from phage infection and is evolutionarily related to human cGAS-STING immunity. cGAS-STING signaling is initiated by the recognition of viral DNA, but the molecular cues activating CBASS are incompletely understood. Using a screen of 975 type I CBASS operon-phage challenges, we show that operons with distinct cGAS/DncV-like nucleotidyltransferases (CD-NTases) and CD-NTase-associated protein (Cap) effectors exhibit marked patterns of phage restriction. We find that some type I CD-NTase enzymes require a C-terminal AGS-C immunoglobulin (Ig)-like fold domain for defense against select phages. Escaper phages evade CBASS via protein-coding mutations in virion assembly proteins, and acquired resistance is largely operon specific. We demonstrate that the phage Bas13 prohead protease interacts with the CD-NTase EcCdnD12 and can induce CBASS-dependent growth arrest in cells. Our results define phage virion assembly as a determinant of type I CBASS immune evasion and support viral protein recognition as a putative mechanism of cGAS-like enzyme activation.


Asunto(s)
Bacteriófagos , Evasión Inmune , Humanos , Bacteriófagos/genética , Operón , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Transducción de Señal , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética
3.
Nat Chem Biol ; 20(7): 877-884, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38172604

RESUMEN

Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.


Asunto(s)
Codón de Terminación , Factores de Terminación de Péptidos , Ribosomas , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/química , Ribosomas/metabolismo , Ribosomas/genética , Humanos , Codón de Terminación/genética , Microscopía por Crioelectrón , Ubiquitinación , Terminación de la Cadena Péptídica Traduccional , Modelos Moleculares , Biosíntesis de Proteínas
4.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292831

RESUMEN

CBASS is an anti-phage defense system that protects bacteria from phage infection and is evolutionarily related to human cGAS-STING immunity. cGAS-STING signaling is initiated by viral DNA but the stage of phage replication which activates bacterial CBASS remains unclear. Here we define the specificity of Type I CBASS immunity using a comprehensive analysis of 975 operon-phage pairings and show that Type I CBASS operons composed of distinct CD-NTases, and Cap effectors exhibit striking patterns of defense against dsDNA phages across five diverse viral families. We demonstrate that escaper phages evade CBASS immunity by acquiring mutations in structural genes encoding the prohead protease, capsid, and tail fiber proteins. Acquired CBASS resistance is highly operon-specific and typically does not affect overall fitness. However, we observe that some resistance mutations drastically alter phage infection kinetics. Our results define late-stage virus assembly as a critical determinant of CBASS immune activation and evasion by phages.

5.
Mol Biol Cell ; 34(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520029

RESUMEN

More than 30% of eukaryotic proteins contain domains that must translocate across or integrate into the endoplasmic reticulum (ER) membrane. With few exceptions, protein translocation and transmembrane domain integration at the ER require the conserved Sec61 translocon. Decades of studies have established a clear mechanistic model for how the Sec61 translocon functions. The biosynthesis of distinct subsets of proteins at the ER also involves accessory factors that interact with the Sec61 translocon and translocating nascent proteins. However, assigning specific functions to many translocon accessory factors has been a persistent challenge in the field. This Perspective discusses recent insights into mechanisms that promote protein biosynthesis at the ER through accessory factors that directly regulate the Sec61 translocon or chaperone nascent proteins within the ER membrane. These translocon accessory factor functions, and more still to be discovered, are essential for producing a diverse and high-fidelity proteome at the ER.


Asunto(s)
Proteínas de la Membrana , Biosíntesis de Proteínas , Canales de Translocación SEC/metabolismo , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Transporte de Proteínas
6.
Artículo en Inglés | MEDLINE | ID: mdl-36041782

RESUMEN

High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Animales , Retículo Endoplásmico/metabolismo , Transporte de Proteínas , Mitocondrias/metabolismo , Células Eucariotas/metabolismo , Membrana Celular/metabolismo , Mamíferos
7.
Elife ; 112022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264623

RESUMEN

Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.


Asunto(s)
Productos Biológicos , Aminoacil-ARN de Transferencia , Animales , Humanos , Productos Biológicos/metabolismo , Codón/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/genética , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Ribosomas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo
8.
Mol Cell ; 82(22): 4277-4289.e10, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36283413

RESUMEN

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Señales de Clasificación de Proteína , Pliegue de Proteína , Mamíferos/metabolismo
9.
Nat Struct Mol Biol ; 29(8): 774-780, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915257

RESUMEN

The E2/E3 enzyme UBE2O ubiquitylates diverse clients to mediate important processes, including targeting unassembled 'orphan' proteins for quality control and clearing ribosomes during erythropoiesis. How quality-control factors, such as UBE2O, select clients on the basis of heterogeneous features is largely unknown. Here, we show that UBE2O client selection is regulated by ubiquitin binding and a cofactor, NAP1L1. Attaching a single ubiquitin onto a client enhances UBE2O binding and multi-mono-ubiquitylation. UBE2O also repurposes the histone chaperone NAP1L1 as an adapter to recruit a subset of clients. Cryo-EM structures of human UBE2O in complex with NAP1L1 reveal a malleable client recruitment interface that is autoinhibited by the intrinsically reactive UBC domain. Adding a ubiquitylated client identifies a distinct ubiquitin-binding SH3-like domain required for client selection. Our findings reveal how multivalency and a feed-forward mechanism drive the selection of protein quality-control clients.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Humanos , Proteína 1 de Ensamblaje de Nucleosomas , Unión Proteica , Ribosomas/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
10.
Nature ; 608(7924): 803-807, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859168

RESUMEN

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes1-4. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide4-13, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals5. The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Proteínas de la Membrana , Receptores de Interleucina-1 , Sphingobacterium , Receptores Toll-Like , Animales , Antivirales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , Fosfatos de Dinucleósidos/metabolismo , Humanos , Inmunidad Innata , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Operón/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/ultraestructura , Sphingobacterium/química , Sphingobacterium/genética , Sphingobacterium/ultraestructura , Sphingobacterium/virología , Receptores Toll-Like/química , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Receptores Toll-Like/ultraestructura
11.
Trends Biochem Sci ; 47(9): 730-731, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35501234

RESUMEN

The signal recognition particle (SRP) cotranslationally targets a large and diverse portion of the nascent proteome to the endoplasmic reticulum (ER). A recent study by Jomaa et al. reveals an unexpected function for the ribosome-bound nascent chain-associated complex (NAC) in sensing ER-targeting signals and recruiting SRP to the appropriate ribosomes for high-fidelity targeting.


Asunto(s)
Retículo Endoplásmico , Partícula de Reconocimiento de Señal , Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
12.
Nat Struct Mol Biol ; 28(12): 1029-1037, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887561

RESUMEN

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.


Asunto(s)
ATPasas Transportadoras de Arsenitos/metabolismo , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Ubiquitinas/metabolismo , Pez Cebra
13.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644530

RESUMEN

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , CMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Burkholderia/enzimología , CMP Cíclico/química , Ciclización , Escherichia coli/enzimología , Modelos Moleculares , Mutación/genética , Nucleótidos Cíclicos/química , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
14.
Mol Biol Cell ; 32(22): ar38, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34586879

RESUMEN

The translation of mRNAs that contain a premature termination codon (PTC) generates truncated proteins that may have toxic dominant negative effects. Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that degrades PTC-containing mRNAs to limit the production of truncated proteins. NMD activation requires a ribosome terminating translation at a PTC, but what happens to the polypeptides synthesized during the translation cycle needed to activate NMD is incompletely understood. Here, by establishing reporter systems that encode the same polypeptide sequence before a normal termination codon or PTC, we show that termination of protein synthesis at a PTC is sufficient to selectively destabilize polypeptides in mammalian cells. Proteasome inhibition specifically rescues the levels of nascent polypeptides produced from PTC-containing mRNAs within an hour, but also disrupts mRNA homeostasis within a few hours. PTC-terminated polypeptide destabilization is also alleviated by depleting the central NMD factor UPF1 or SMG1, the kinase that phosphorylates UPF1 to activate NMD, but not by inhibiting SMG1 kinase activity. Our results suggest that polypeptide degradation is linked to PTC recognition in mammalian cells and clarify a framework to investigate these mechanisms.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido/genética , Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Helicasas/metabolismo , Transactivadores/metabolismo , Codón sin Sentido , Codón de Terminación , Citometría de Flujo , Genes Reporteros , Células HEK293 , Humanos , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , ARN Helicasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética
15.
J Am Chem Soc ; 143(34): 13473-13477, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34403584

RESUMEN

Employed for over half a century to study protein synthesis, cycloheximide (CHX, 1) is a small molecule natural product that reversibly inhibits translation elongation. More recently, CHX has been applied to ribosome profiling, a method for mapping ribosome positions on mRNA genome-wide. Despite CHX's extensive use, CHX treatment often results in incomplete translation inhibition due to its rapid reversibility, prompting the need for improved reagents. Here, we report the concise synthesis of C13-amide-functionalized CHX derivatives with increased potencies toward protein synthesis inhibition. Cryogenic electron microscopy (cryo-EM) revealed that C13-aminobenzoyl CHX (8) occupies the same site as CHX, competing with the 3' end of E-site tRNA. We demonstrate that 8 is superior to CHX for ribosome profiling experiments, enabling more effective capture of ribosome conformations through sustained stabilization of polysomes. Our studies identify powerful chemical reagents to study protein synthesis and reveal the molecular basis of their enhanced potency.


Asunto(s)
Productos Biológicos/farmacología , Cicloheximida/análogos & derivados , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Amidas/química , Productos Biológicos/química , Cicloheximida/metabolismo , Cicloheximida/farmacología , Células HEK293 , Humanos , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
16.
Trends Biochem Sci ; 46(9): 731-743, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966939

RESUMEN

Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
17.
Science ; 369(6511)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32973005

RESUMEN

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Retículo Endoplásmico/enzimología , Membranas Mitocondriales/enzimología , ATPasas Tipo P/química , Proteínas de Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Células HeLa , Humanos , ATPasas Tipo P/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
18.
Nature ; 586(7829): 429-433, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32877915

RESUMEN

Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity1-5. STING shares no structural homology with other known signalling proteins6-9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Evolución Molecular , Proteínas de la Membrana , Sistemas de Mensajero Secundario , Animales , Bacterias/química , Bacterias/virología , Proteínas Bacterianas/química , Bacteriófagos , Cristalografía por Rayos X , GMP Cíclico/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , NAD/metabolismo , Nucleotidiltransferasas/metabolismo
19.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544385

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Asunto(s)
Bacterias/virología , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Inmunidad , Oligonucleótidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Ligandos , Mutagénesis/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Sistemas de Mensajero Secundario
20.
Cell Rep ; 30(7): 2106-2114.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075755

RESUMEN

Ribosome-associated quality control (RQC) disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts. A key step of RQC is the cleavage of P-site tRNA by the endonuclease ANKZF1 (Vms1 in yeast) to release incompletely synthesized polypeptides from ribosomes for degradation. Re-use of the cleaved tRNA for translation requires re-addition of the universal 3'CCA nucleotides removed by ANKZF1. Here, we show that ELAC1 is both necessary and sufficient to remove the 2',3'-cyclic phosphate on ANKZF1-cleaved tRNAs to permit CCA re-addition by TRNT1. ELAC1 activity is optimized for tRNA recycling, whereas ELAC2, the essential RNase Z isoform in eukaryotes, is required to remove 3' trailers during tRNA biogenesis. Cells lacking ELAC1 specifically accumulate unrepaired tRNA intermediates upon the induction of ribosome stalling. Thus, optimal recycling of ANKZF1-cleaved tRNAs in vertebrates is achieved through the duplication and specialization of a conserved tRNA biosynthesis enzyme.


Asunto(s)
ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Humanos , Biosíntesis de Proteínas , Control de Calidad , ARN de Transferencia/genética , Ribosomas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA