Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Natl Sci Rev ; 10(11): nwad112, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818115

RESUMEN

The recent discovery of superconductivity in infinite-layer nickelates generates tremendous research endeavors, but the ground state of their parent compounds is still under debate. Here, we report experimental evidence for the dominant role of Kondo scattering in the underdoped Nd1-xSrxNiO2 thin films. A resistivity minimum associated with logarithmic temperature dependence in both longitudinal and Hall resistivities are observed in the underdoped Nd1-xSrxNiO2 samples before the superconducting transition. At lower temperatures down to 0.04 K, the resistivities become saturated, following the prediction of the Kondo model. A linear scaling behavior [Formula: see text] between anomalous Hall conductivity [Formula: see text] and conductivity [Formula: see text]is revealed, verifying the dominant Kondo scattering at low temperature. The effect of weak (anti-)localization is found to be secondary. Our experiments can help in clarifying the basic physics in the underdoped Nd1-xSrxNiO2 infinite-layer thin films.

2.
ACS Nano ; 7(10): 9049-54, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24003914

RESUMEN

We performed low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) studies on the electronic properties of (√3 × âˆš3)R30° phase of silicene on Ag(111) surface. We found the existence of Dirac Fermion chirality through the observation of -1.5 and -1.0 power law decay of quasiparticle interference (QPI) patterns. Moreover, in contrast to the trigonal warping of Dirac cone in graphene, we found that the Dirac cone of silicene is hexagonally warped, which is further confirmed by density functional calculations and explained by the unique superstructure of silicene. Our results demonstrate that the (√3 × âˆš3)R30° phase is an ideal system to investigate the unique Dirac Fermion properties of silicene.

3.
Small ; 8(13): 2078-82, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22511522

RESUMEN

The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...