Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Cell Rep Med ; : 101568, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38754419

RESUMEN

Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.

2.
Front Immunol ; 15: 1384633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799454

RESUMEN

Background: Acute myeloid leukemia (AML) is a highly aggressive and pathogenic hematologic malignancy with consistently high mortality. Lysosomes are organelles involved in cell growth and metabolism that fuse to form specialized Auer rods in AML, and their role in AML has not been elucidated. This study aimed to identify AML subtypes centered on lysosome-related genes and to construct a prognostic model to guide individualized treatment of AML. Methods: Gene expression data and clinical data from AML patients were downloaded from two high-throughput sequencing platforms. The 191 lysosomal signature genes were obtained from the database MsigDB. Lysosomal clusters were identified by unsupervised consensus clustering. The differences in molecular expression, biological processes, and the immune microenvironment among lysosomal clusters were subsequently analyzed. Based on the molecular expression differences between lysosomal clusters, lysosomal-related genes affecting AML prognosis were screened by univariate cox regression and multivariate cox regression analyses. Algorithms for LASSO regression analyses were employed to construct prognostic models. The risk factor distribution, KM survival curve, was applied to evaluate the survival distribution of the model. Time-dependent ROC curves, nomograms and calibration curves were used to evaluate the predictive performance of the prognostic models. TIDE scores and drug sensitivity analyses were used to explore the implication of the model for AML treatment. Results: Our study identified two lysosomal clusters, cluster1 has longer survival time and stronger immune infiltration compared to cluster2. The differences in biological processes between the two lysosomal clusters are mainly manifested in the lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model consisting of six prognosis-related genes was constructed. The prognostic model showed good predictive performance in all three data sets. Patients in the low-risk group survived significantly longer than those in the high-risk group and had higher immune infiltration and stronger response to immunotherapy. Patients in the high-risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but lower sensitivity to ATRA compared to low -risk patients. Conclusion: Our prognostic model based on lysosome-related genes can effectively predict the prognosis of AML patients and provide reference evidence for individualized immunotherapy and pharmacological chemotherapy for AML.


Asunto(s)
Inmunoterapia , Leucemia Mieloide Aguda , Lisosomas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/diagnóstico , Lisosomas/metabolismo , Pronóstico , Femenino , Masculino , Inmunoterapia/métodos , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Perfilación de la Expresión Génica , Adulto , Nomogramas , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Anciano , Regulación Leucémica de la Expresión Génica , Transcriptoma
3.
Ultrason Sonochem ; 107: 106901, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38735786

RESUMEN

Nano-assemblies have wide applications in biomedicine, functional coatings, Pickering emulsifiers, hydrogels, and so forth. The preparation of assemblies mainly utilizes the polymerization-induced self-assembly (PISA) method, which can produce high-concentration nanoscale assemblies in one step. However, the initiation processes of most reported PISA are limited to thermal initiation. Here, we reported two green and efficient methods for synthesizing nano-assemblies with various morphologies using ultrasound (20 kHz)/ microwave (500 W) assisted aqueous-phase RAFT-PISA in 3 h and 1 h. Cyclodextrin (CD) and styrene (St) nucleating monomer were complexed in a 1:1 ratio. Then, using Poly (ethylene glycol) methyl ether as the macromolecular reversible addition-fragmentation chain transfer (RAFT) agent (PEG-CTA) to control the CD/St complexes, the conversion rate of St monomer was respectively 27 %-60 %, 20 %-30 % within 3 h and 1 h under ultrasonics/microwave assisted PISA. Results showed that the morphologies of the assemblies are not only related to the length of PS block, but also to the assistance types and the remaining monomer concentration. The results showed that only PEG45-b-PS90 and PEG45-b-PS241 assemblies prepared by ultrasonics assisted PISA form evolved lamellaes and vesicles (100 nm), which break through the limitation of kinetic freezing. But the ultrasonic reaction on morphology of assemblies is not all favourable. For one thing, it can promote the movement of particles; for another, it makes reverse morphology transformation and sphere is preferred morphology. Therefore, the main reason of morphology evolution is the remaining monomer concentration of PEG45-b-PS90 and PEG45-b-PS241 assemblies reaches to 55 %-65 %, which promoting the segment movement. The results showed that the morphology of the assemblies prepared by microwave assisted PISA changed from spherical micelles to short rods, and finally to vesicles (120-140 nm) as the length of hydrophobic PS block increases. The kinetic freezing problem was solved in microwave-assisted PISA due to the action of microwaves and more remaining monomer concentration. Both them can boost particles movement.

4.
Med Oncol ; 41(7): 166, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819709

RESUMEN

The full-length p200CUX1 protein encoded by the homology frame CUT-like protein (CUX1) plays an important role in tumors as a pro-oncogene or oncogene. However, its role and mechanism in acute myeloid leukemia remain unknown. p200CUX1 regulates several pathways, including the MAPK signaling pathway. Our data showed that p200CUX1 is lowly expressed in THP1 and U937 AML cell lines. Lentiviral overexpression of p200CUX1 reduced proliferation and promoted apoptosis and G0/G1 phase blockade, correlating with MAPK pathway suppression. Additionally, p200CUX1 regulated the expression of bone morphogenetic protein 8B (BMP8B), which is overexpressed in AML. Overexpression of p200CUX1 downregulated BMP8B expression and inhibited the MAPK pathway. Furthermore, BMP8B knockdown inhibited AML cell proliferation, enhanced apoptosis and the sensitivity of ATRA-induced cell differentiation, and blocked G0/G1 transition. Our findings demonstrate the pivotal function of the p200CUX1-BMP8B-MAPK axis in maintaining the viability of AML cells. Consequently, targeting p200CUX1 could represent a viable strategy in AML therapy.


Asunto(s)
Apoptosis , Proliferación Celular , Leucemia Mieloide Aguda , Sistema de Señalización de MAP Quinasas , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/fisiología , Línea Celular Tumoral , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Progresión de la Enfermedad
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701957

RESUMEN

The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.


Asunto(s)
Aptámeros de Nucleótidos , Astrocitos , Exosomas , Glioma , MicroARNs , Nucleolina , Oligodesoxirribonucleótidos , Fosfoproteínas , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Astrocitos/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Glioma/metabolismo , Glioma/patología , Glioma/genética , Ratones , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Oligodesoxirribonucleótidos/farmacología , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/genética , Exosomas/metabolismo , Exosomas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Transducción de Señal
6.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38558978

RESUMEN

The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.

7.
Hum Cell ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656742

RESUMEN

Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-ß, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-ß/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-ß/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-ß/Smad signaling.

8.
Front Cardiovasc Med ; 11: 1361370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481956

RESUMEN

The difficulty and complexity of lead extraction procedures increase with the age of the lead to be extracted. The extraction of old (>20 years) leads is more time-consuming and requires advanced tools and a complex technique. In this case, we retrieved a very old (>30 years) lead using a loop formed by a catheter and a gooseneck snare. The catheter was rotated to remove the lead-bound sites. The lead was successfully retrieved using a Needle's Eye Snare.

9.
Ital J Pediatr ; 50(1): 39, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38439018

RESUMEN

BACKGROUND: Previous studies of maternal iron and birth outcomes have been limited to single indicators that do not reflect the comprehensive relationship with birth outcomes. We aimed to investigate the relationship between maternal iron metabolism and neonatal anthropometric indicators using comprehensive iron-related indicators. METHODS: A total of 914 Chinese mother-child dyads were enrolled in this prospective study. Subjects' blood samples were collected at ≤ 14 weeks of gestation. Serum concentrations of iron-related indicators were measured by enzyme-linked immunosorbent assay (ELISA). Femur length was measured by B-ultrasound nearest delivery. Neonatal anthropometric indicators were collected from medical records. RESULTS: After adjustment for potential covariates, higher iron (per one standard deviation, SD increase) was detrimentally associated with - 0.22 mm lower femur length, whereas higher transferrin (per one SD increase) was associated with 0.20 mm higher femur length. Compared with normal subjects (10th-90th percentiles), subjects with extremely high (> 90th percentile) iron concentration were detrimentally associated with lower femur length, birth weight, and chest circumference, and a higher risk of low birth weight, LBW (HR: 3.92, 95%CI: 1.28, 12.0). Subjects with high concentration of soluble transferrin receptor, sTFR and transferrin (> 90th percentile) were associated with higher femur length. Subjects with low concentration of iron and ferritin concentrations (< 10th percentile) were associated with a higher risk of LBW (HR: 4.10, 95%CI: 1.17, 14.3) and macrosomia (HR: 2.79, 95%CI: 1.06, 7.35), respectively. CONCLUSIONS: Maternal iron overload in early pregnancy may be detrimentally associated with neonatal anthropometric indicators and adverse birth outcomes.


Asunto(s)
Pueblo Asiatico , Hierro , Recién Nacido , Femenino , Embarazo , Humanos , Estudios Prospectivos , Transferrinas , China/epidemiología
10.
Ultrason Sonochem ; 105: 106855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531733

RESUMEN

Assemblies are widely used in biomedicine, batteries, functional coatings, Pickering emulsifiers, hydrogels, and luminescent materials. Polymerization-induced self-assembly (PISA) is a method for efficiently preparing particles, mainly initiated thermally. However, thermally initiated PISA usually requires a significant amount of time and energy. Here, we demonstrate the preparation of nano-assemblies with controllable morphologies and size using ultrasound (20 kHz) assisted ethanol-phase RAFT-PISA in three hours. Using poly (N, N-dimethylaminoethyl methacrylate) as the macromolecular reversible addition-fragmentation chain transfer agent (PDMA-CTA) to control the nucleating monomer benzyl methacrylate (BzMA), we obtained nano-assemblies with different morphologies. With the length of hydrophobic PBzMA block growth, the morphologies of the assemblies at 15 wt% solid content changed from spheres to vesicles, and finally to lamellae; the morphologies of the assemblies at 30 wt% changed from spheres micelles to short worms, then vesicles, and finally to large compound vesicles. With the same targeted degree of polymerization, nano-assemblies having a 30 wt% solid content display a more evolved morphology. The input of ultrasonic energy makes the system have higher surface free energy, results the mass fraction interval of solventphilic blocks (fhydrophilic) corresponding to the formation of spherical micelles is expanded from fhydrophilic > 45 % to fhydrophilic > 31 % under ultrasound and the fhydrophilic required to form worms, vesicles, and large composite vesicles decreases in turn. It is worth noting that the fhydrophilic interval of worms prepared by ultrasonics assisted PISA gets larger. Overall, the highly green, externally-regulatable and fast method of ultrasonics assisted PISA can be extended to vastly different diblock copolymers, for a wide range of applications.

11.
Int J Biol Macromol ; 262(Pt 2): 130152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365143

RESUMEN

Supplementing probiotics or indigestible carbohydrates is a usual strategy to prevent or revert unhealthy states of the gut by reshaping gut microbiota. One criterion that probiotics are efficacious is the capacity to survive in the gastrointestinal tract. Biofilm is the common growth mode of microorganisms with high tolerances toward harsh environments. Suitable scaffolds are crucial for successful biofilm culture and large-scale production of biofilm-phenotype probiotics. However, the role of scaffolds containing indigestible carbohydrates in biofilm formation has not been studied. In this study, porous zein/cellulose composite scaffolds provided nitrogen sources and carbon sources simultaneously at the solid/liquid interfaces, being beneficial to the biofilm formation of Lactobacillus reuteri. The biofilms showed 2.1-17.4 times higher tolerances in different gastrointestinal conditions. In human fecal fermentation, the biofilms combined with the zein/cellulose composite scaffolds act as the "synbiotics" positively modulating the gut microbiota and the short-chain fatty acids (SCFAs), where biofilms provide probiotics and scaffolds provide prebiotics. The "synbiotics" show a more positive regulation ability than planktonic L. reuteri, presenting potential applications in gut health interventions. These results provide an understanding of the synergistic effects of biofilm-phenotype probiotics and indigestible carbohydrates contained in the "synbiotics" in gut microbiota modulation.


Asunto(s)
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Simbióticos , Zeína , Humanos , Celulosa , Porosidad , Prebióticos , Carbohidratos , Biopelículas
12.
J Am Chem Soc ; 146(8): 5455-5460, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359146

RESUMEN

Sulfamic acid (NH2SO3H, SFA) is supposed to play an important role in aerosol new particle formation (NPF) in the atmosphere, and its formation mainly arises from the SO3-NH3 reaction system in which weakly bonded donor-acceptor complexes such as SO3···NH3 and isomeric HNSO2···H2O have been proposed as the key intermediates. In this study, we reveal the first spectroscopic observation of HNSO2···H2O in two forms in a solid Ar matrix at 10 K. The major form consists of two intermolecular H bonds by forming a six-membered ring structure with a calculated dissociation energy of 7.6 kcal mol-1 at the CCSD(T)-F12a/aug-cc-pVTZ level of theory. The less stable form resembles SO3···H2O in containing a pure chalcogen bond (S···O) with a dissociation energy of 7.2 kcal mol-1. The characterization of HNSO2···H2O with matrix-isolation IR spectroscopy is supported by D- and 18O-isotope labeling and quantum chemical calculations.

13.
FASEB J ; 38(2): e23417, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226856

RESUMEN

Long-term exposure to non-physiologically compatible dialysate inevitably leads to peritoneal fibrosis (PF) in patients undergoing peritoneal dialysis (PD), and there is no effective prevention or treatment for PF. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced after catalysis by sphingosine kinase (SPHK) 1/2 and activates signals through the S1P receptor (S1PR) via autocrine or paracrine. However, the role of SPHK1/S1P/S1PR signaling has never been elucidated in PF. In our research, we investigated S1P levels in peritoneal effluents and demonstrated the role of SPHK1/S1P/S1PR pathway in peritoneal fibrosis. It was found that S1P levels in peritoneal effluents were positively correlated with D/P Cr (r = 0.724, p < .001) and negatively correlated with 4 h ultrafiltration volume (r = -0.457, p < .001). S1PR1 and S1PR3 on peritoneal cells were increased after high glucose exposure in vivo and in vitro. Fingolimod was applied to suppress S1P/S1PR pathway. Fingolimod restored mouse peritoneal function by reducing interstitial hyperplasia, maintaining ultrafiltration volume, reducing peritoneal transport solute rate, and mitigating the protein expression changes of fibronectin, vimentin, α-SMA, and E-cadherin induced by PD and S1P. Fingolimod preserved the morphology of the human peritoneal mesothelial cells, MeT-5A, and moderated the mesothelial-mesenchymal transition (MMT) process. We further delineated that SPHK1 was elevated in peritoneal cells after high glucose exposure and suppression of SPHK1 in MeT-5A cells reduced S1P release. Overexpression of SPHK1 in MeT-5A cells increased S1P levels in the supernatant and fostered the MMT process. PF-543 treatment, targeting SPHK1, alleviated deterioration of mouse peritoneal function. In conclusion, S1P levels in peritoneal effluent were correlated with the deterioration of peritoneal function. SPHK1/S1P/S1PR pathway played an important role in PF.


Asunto(s)
Lisofosfolípidos , Fibrosis Peritoneal , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina/análogos & derivados , Animales , Ratones , Humanos , Clorhidrato de Fingolimod , Glucosa
14.
J Chem Inf Model ; 64(3): 563-566, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241025

RESUMEN

The rapid advancement of large language models is reshaping research across various fields, offering a novel approach to the complex realm of molecular studies. Our evaluation of GPT-4 and GPT-3.5, focusing on their performance in generating and optimizing molecular structures, highlights GPT-4's strengths in certain aspects of molecular optimization. However, it also revealed challenges in accurately creating complex molecules. Addressing these issues, we propose possible directions for future molecular science research. These suggestions aim to forge new paths for exploring the intricacies of molecular structures, potentially bringing new efficiencies and innovations in the field.

15.
J Clin Monit Comput ; 38(1): 197-203, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37792140

RESUMEN

To identify and prevent perioperative hypothermia, most surgical patients require a non-invasive, accurate, convenient, and continuous core temperature method, especially for patients undergoing major surgery. This study validated the precision and accuracy of a cutaneous zero-heat-flux thermometer and its performance in detecting intraoperative hypothermia. Adults undergoing major non-cardiac surgeries with general anaesthesia were enrolled in the study. Core temperatures were measured with a zero-heat-flux thermometer, infrared tympanic membrane thermometer, and oesophagal monitoring at 15-minute intervals. Taking the average value of temperature measured in the tympanic membrane and oesophagus as a reference, we assessed the agreement using the Bland-Altman analysis and linear regression methods. Sensitivity, specificity, and predictive values of detecting hypothermia were estimated. 103 patients and one thousand sixty-eight sets of paired temperatures were analyzed. The mean difference between zero-heat-flux and the referenced measurements was -0.03 ± 0.25 °C, with 95% limits of agreement (-0.52 °C, 0.47 °C) was narrow, with 94.5% of the differences within 0.5 °C. Lin's concordance correlation coefficient was 0.90 (95%CI 0.89-0.92). The zero-heat-flux thermometry detected hypothermia with a sensitivity of 82% and a specificity of 90%. The zero-heat-flux thermometer is in good agreement with the reference core temperature based on tympanic and oesophagal temperature monitoring in patients undergoing major surgeries, and appears high performance in detecting hypothermia.


Asunto(s)
Hipotermia , Termometría , Adulto , Humanos , Temperatura Corporal , Temperatura , Calor , Monitoreo Intraoperatorio/métodos , Termómetros , Esófago
16.
Cell Genom ; 3(12): 100446, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116121

RESUMEN

Capturing and depicting the multimodal tissue information of tissues at the spatial scale remains a significant challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing. Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by integrating these two datasets through probabilistic alignment and enabling further analysis of gene regulation and cellular interactions. We benchmarked SpaTrio using simulation datasets and demonstrated its accuracy and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topological patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multimodal insights into spatial biology.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37973667

RESUMEN

Pulmonary arterial hypertension (PAH) is a malignant cardiovascular disease. Eukaryotic initiation factor 2α (eIF2α) plays an important role in the proliferation of pulmonary artery smooth muscle cells (PASMCs) in hypoxia-induced pulmonary hypertension (HPH) rats. However, the regulatory mechanism of eIF2α remains poorly understood in PAH rats. Here, we discover eIF2α is markedly upregulated in monocrotaline (MCT)-induced PAH rats, eIF2α can be upregulated by mRNA methylation, and upregulated eIF2α can promote PASMC proliferation in MCT-PAH rats. GSK2606414, eIF2α inhibitor, can downregulate the expression of eIF2α and alleviate PASMC proliferation in MCT-PAH rats. And we further discover the mRNA of eIF2α has a common sequence with N 6-methyladenosine (m6A) modification by bioinformatics analysis, and the expression of METTL3, WTAP, and YTHDF1 is upregulated in MCT-PAH rats. These findings suggest a potentially novel mechanism by which eIF2α is upregulated by m6A modification in MCT-PAH rats, which is involved in the pathogenesis of PAH.

18.
J Phys Chem Lett ; 14(46): 10450-10456, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37962268

RESUMEN

The mercaptomethyl radical (·CH2SH) is a higher-energy isomer of the methylthio radical (CH3S·) that has been proposed as an important intermediate in atmospheric and interstellar sulfur chemistry. Herein, we report the spectroscopic identification of ·CH2SH during the UV (365 nm) photolysis of CH3S· in a solid Ar-matrix at 10 K. Upon subsequent irradiation at 266 nm, the dehydrogenation of ·CH2SH to yield CS via the intermediacy of the elusive thioformyl radical (HCS·) has also been observed. The characterization of ·CH2SH and HCS· with matrix-isolation IR and UV-vis spectroscopy is supported by 13C-isotope labeling and quantum chemical calculations at the CCSD(T)-F12a/cc-pVTZ-F12 level using configuration-selective vibrational configuration interaction theory (VCI). The disclosed photochemistry of ·CH2SH provides new insight into understanding the chemical evolution of organosulfur molecules in the interstellar medium (ISM).

19.
Med Oncol ; 40(11): 325, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805625

RESUMEN

Cytarabine-resistant acute myeloid leukemia (AML) is a common phenomenon, necessitating the search for new chemotherapeutics. WEE1 participates in cell cycle checkpoint signaling and inhibitors targeting WEE1 (WEE1i) constitute a potential novel strategy for AML treatment. HDAC (histone deacetylase) inhibitors have been shown to enhance the anti-tumor effects of WEE1i but molecular mechanisms of HDAC remain poorly characterized. In this study, the WEE1 inhibitor PD0166285 showed a relatively good anti-leukemia effect. Notably, PD0166285 can arise the expression of HDAC11 which was negatively correlated with survival of AML patients. Moreover, HDAC11 can reduced the anti-tumor effect of PD0166285 through an effect on p53 stability and the changes in phosphorylation levels of MAPK pathways. Overall, the cell cycle inhibitor, PD0166285, is a potential chemotherapeutic drug for AML. These fundings contribute to a functional understanding of HDAC11 in AML.


Asunto(s)
Proteínas de Ciclo Celular , Leucemia Mieloide Aguda , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina/farmacología , Ubiquitina/uso terapéutico , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Apoptosis , Línea Celular Tumoral
20.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790849

RESUMEN

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteína de la Zonula Occludens-1 , Autofagia/genética , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Riñón , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...