Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(3): 661-669, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36138144

RESUMEN

Neddylation is a type of posttranslational protein modification that has been observed to be overactivated in various cancers. UBC12 is one of two key E2 enzymes in the neddylation pathway. Reports indicate that UBC12 deficiency may suppress lung cancer cells, such that UBC12 could play an important role in tumor progression. However, systematic studies regarding the expression profile of UBC12 in cancers and its relationship to cancer prognosis are lacking. In this study, we comprehensively analyzed UBC12 expression in diverse cancer types and found that UBC12 is markedly overexpressed in most cancers (17/21), a symptom that negatively correlates with the survival rates of cancer patients, including gastric cancer. These results demonstrate the suitability of UBC12 as a potential target for cancer treatment. Currently, no effective inhibitor targeting UBC12 has been discovered. We screened a natural product library and found, for the first time, that arctigenin has been shown to significantly inhibit UBC12 enzyme activity and cullin neddylation. The inhibition of UBC12 enzyme activity was newly found to contribute to the effects of arctigenin on suppressing the malignant phenotypes of cancer cells. Furthermore, we performed proteomics analysis and found that arctigenin intervened with cullin downstream signaling pathways and substrates, such as the tumor suppressor PDCD4. In summary, these results demonstrate the importance of UBC12 as a potential therapeutic target for cancer treatment, and, for the first time, the suitability of arctigenin as a potential compound targeting UBC12 enzyme activity. Thus, these findings provide a new strategy for inhibiting neddylation-overactivated cancers.


Asunto(s)
Proteínas Cullin , Neoplasias Pulmonares , Enzimas Ubiquitina-Conjugadoras , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Cullin/efectos de los fármacos , Furanos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Proteínas de Unión al ARN , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/efectos de los fármacos
2.
Acta Pharmacol Sin ; 40(10): 1343-1350, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31296953

RESUMEN

Emerging evidence indicates that M2-polarized tumor-associated macrophages (TAMs) directly participate in tumor initiation, progression and metastasis. However, to date, few studies have investigated novel strategies for inhibiting TAMs in order to overcome osteosarcoma. In this study, we reported that M2 macrophages were enriched in osteosarcoma tissues from patients, and M2-polarized TAMs enhanced cancer initiation and stemness of osteosarcoma cells, thereby establishing M2-polarized TAMs as a therapeutic target for blocking osteosarcoma formation. We also found that all-trans retinoic acid (ATRA) weakened TAM-induced osteosarcoma tumor formation by inhibiting M2 polarization of TAMs in vivo, and inhibited the colony formation, as well as sphere-formation capacity of osteosarcoma cells promoted by M2-type macrophages in vitro. Furthermore, M2-type macrophages enhanced cancer stem cells (CSCs) properties as assessed by increasing the numbers of CD117+Stro-1+ cells accompanied by the upregulation of CSC markers (CD133, CXCR4, Nanog, and Oct4), which could clearly be reduced by ATRA. Taken together, the results of this study demonstrated the role of M2-polarized TAMs in osteosarcoma initiation and stemness by activating CSCs, and indicated that ATRA treatment is a promising approach for treating osteosarcoma by preventing M2 polarization of TAMs.


Asunto(s)
Macrófagos/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Células RAW 264.7
3.
Eur J Pharmacol ; 844: 204-215, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30552901

RESUMEN

Osteosarcoma is the most common primary malignant bone tumour, but the survival rate of patients has plateaued since the mid-1980s. Adriamycin is an integral component of the current first-line chemotherapies used for osteosarcoma, but dose-dependent severe side effects often limit its clinical application. Here, we propose a potential combination regimen in which adriamycin plus 2-bromopalmitate, a palmitoylation inhibitor, exhibited powerful therapeutic effects on osteosarcoma. First, 2-bromopalmitate strongly increased the proliferation inhibition of adriamycin in both human osteosarcoma cell lines and primary osteosarcoma cells. Adriamycin-induced apoptosis in osteosarcoma cells was enhanced when synergized with 2-bromopalmitate. Our study indicated that the reactive oxygen species scavenger NAC and GSH could largely reverse the apoptosis induced by adriamycin combined with 2-bromopalmitate, demonstrating that reactive oxygen species played an essential role in this combination therapy. Moreover, CHOP was remarkably elevated in the combination group, and silencing of CHOP almost completely blocked the apoptosis induced by the combination of 2-bromopalmitate and adriamycin. Taken together, our study provides a prospective therapeutic strategy to eliminate osteosarcoma, which is propitious to clinical combination therapy development.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/metabolismo , Doxorrubicina/farmacología , Osteosarcoma/metabolismo , Palmitatos/farmacología , Factor de Transcripción CHOP/metabolismo , Adolescente , Adulto , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Niño , Sinergismo Farmacológico , Femenino , Humanos , Osteosarcoma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/genética , Adulto Joven
4.
J Pineal Res ; 54(3): 271-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22946793

RESUMEN

Clinical epidemiology has indicated that the endothelial injury is a potential contributor to the pathogenesis of ischemic neurovascular damage. In this report, we assessed S-nitrosylation and nitration of Keap1 to identify downstream nitric oxide redox signaling targets into endothelial cells during ischemia. Here, oxygen-glucose deprivation (OGD) exposure initiates the nuclear import of Keap1 in endothelial cells, which interacted with nuclear-localized Nrf2, as demonstrated through co-immunoprecipitation and immunocytochemical assay. Paralleling the ischemia-induced nuclear import of Keap1, increased nitrotyrosine immunoreactivity in endothelial cells was also observed. Consistently, the addition of peroxynitrite provoked nuclear import of Keap1 and a concomitant Nrf2 nuclear import in the endothelial cells. Importantly, pharmacological inhibition of nitrosative stress by melatonin partially inhibited the OGD-induced constitutive nuclear import of Keap1 and subsequently disturbance of Nrf2/Keap1 signaling. Moreover, the effect of melatonin on nitration and S-nitrosylation of keap1 was examined in endothelial cells with 6 hr OGD exposure. Here, we demonstrated that OGD induced tyrosine nitration of Keap1, which was blocked by melatonin treatment, while there were no significant changes in S-nitrosylation of Keap1. The specific amino acid residues of Keap1 involved in tyrosine nitration were identified as Y473 by mass spectrometry. Moreover, the protective role of melatonin against damage to endothelial tight junction integrity was addressed by ZO-1 expression, paralleled with the restored heme oxygenase-1 levels during OGD. Together, our results emphasize that upon nitrosative stress, the protective effect of melatonin on endothelial cells is likely mediated at least in part by inhibition of ischemia-evoked protein nitration of Keap1, hence contributing to relieve the disturbance of Nrf2/Keap1 antioxidative signaling.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isquemia/metabolismo , Melatonina/farmacología , Estrés Fisiológico/efectos de los fármacos , Análisis de Varianza , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular , Células Endoteliales/metabolismo , Glucosa/metabolismo , Histocitoquímica , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Microscopía Fluorescente , Factor 2 Relacionado con NF-E2/metabolismo , Nitratos/metabolismo , Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...